

Clifton Scannell Emerson Associates

Engineering Planning Report - Drainage & Water Services EngineNode 220 kV Substation and Grid Connection

Client: EngineNode

Date: 31th July 2020

Job Number: 18_086

		0
	Engineering	E
UITING ENGINEER	\$	

CONS

Structural ingineering

Transport Engineering

Engineering

Environmental Project Management

Health and Safety

Clifton Scannell Emerson Associates Limited, Consulting Engineers, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland. T. +353 1 2885006 F. +353 1 2833466 E. info@csea.ie W. www.csea.ie

Document Control Sheet

Project Name:	EngineNode 220 kV Substation and Grid Connection
Project Number:	18_086
Report Title:	Engineering Planning Report - Drainage & Water Services
Filename:	RPT-18_086-011

Issue No.	Issue Status	Date	Prepared by	Checked by
1.0	DRAFT	02/07/2020	ZS	CD
1.1	APPROVAL	15/07/2020	CD	HF
1.2	APPROVAL	31/07/2020	ZS	CD

Clifton Scannell Emerson Associates Limited, Consulting Engineers, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland. T. +353 1 2885006 F. +353 1 2833466 E. info@csea.ie W. www.csea.ie

Table of Contents

1	Introdu	ction	. 4
	1.1	Overview	. 4
	1.2	Existing Land Use	. 4
	1.3	Proposed Development on Landholding (subject to concurrent planning application)	. 4
	1.4	Proposed Infrastructure on Landholding (subject to concurrent planning application)	
2	Surface	e Water Drainage	
	2.1	General	
	2.2	Existing Surface Water Network	. 5
	2.3	Proposed Surface Water Network	. 5
	2.3.1	Overview	
	2.3.2	Surface Water Network Design	. 6
	2.3.3	SuDS Implementation	. 6
	2.3.4	Water Quality	. 7
	2.3.5	Water Quantity	. 7
3	Foul W	ater Drainage	. 9
	3.1	General	. 9
	3.2	Existing Infrastructure	. 9
	3.3	Proposed Foul Water Drainage Network	. 9
4	Water	Supply	11
	4.1	General	11
	4.2	Existing Infrastructure	11
	4.3	Potable Water Supply	11
	4.4	Fire Flow Requirements	12
5		Risk Assessment	
Арр	endix A	- EngineNode Data Storage Engineering Planning Report Drainage and Water Services	
		- Proposed Site Drawings (subject to concurrent planning application)	
		- Irish Water CoF	
		- Surface Water Drainage Calculations	
		- Petrol Interceptor Details	
		– SurfSep [™] Details	
App	endix G	G – Site Specific Flood Risk Assessment Report	21

1 Introduction

1.1 Overview

The following report is being submitted as part of the Strategic Infrastructure Development (SID) Application for the proposed development that comprises of a 220kV Gas Insulated Switchgear (GIS) Substation, 4 Transformers, an underground double circuit 220kV cable installation and an underground 49kVA cable installation.

The Proposed Development comprises a new Gas Insulated Substation 220kV GIS substation and two underground 220kV transmission lines from the proposed substation to the existing overhead 220 kV line Corduff to Woodlands.

The proposed 75kVA cable installation will provide a connection from an existing underground MV circuit which is located within the roadbed of the L1010 to the proposed 220kV GIS Substation.

1.2 Existing Land Use

The existing site is currently a greenfield site which was previously used as agricultural land.

1.3 Proposed Development on Landholding (subject to concurrent planning application)

The substation site is located on lands in Bracetown, Dunboyne, Co. Meath just off the M3 Motorway. The site is located c. 1.8km north-east of Dunboyne and traverses the townlands of Bracetown, Gunnocks, Normanstown, Pace and Portmanna, in the Barony of Dunboyne and the Civil Parish of Dunboyne.

The substation site is 1.7 hectares in area and is zoned as industrial/commercial (E2 - General Industry and Employment/E3 - Warehousing and Distribution as per the Meath County Development Plan 2013-2019 (MCDP)). The lands in question have been subject to planning application which is outlined below

• Proposed development (subject to concurrent planning application) under Meath County Council Reg. Ref. RA/191593 which consists of four number two-storey data storage buildings each containing eight number data halls within each building, a single storey energy centre building, an AGI substation, and ancillary services.

1.4 Proposed Infrastructure on Landholding (subject to concurrent planning application)

The proposed infrastructure subject to concurrent planning application under Meath County Council Reg Ref: RA/191593 includes connections to external Irish Water water supply main and foul sewer, existing watercourse bordering the site to the southeast which joins the Pinkeen Stream approximately 2 km east of the site, site entrance, gate house and site wide security fencing and gate in addition to infrastructure associated with the proposed data storage facility.

The services for the proposed development connect to the infrastructure described above which have been designed to facilitate the proposed development.

The Engineering and Water Services Report (Document No. RPT-18_086-004) submitted in support of this planning application is included in Appendix A to this report.

2 Surface Water Drainage

2.1 General

The proposed development will provide attenuation in compliance with the requirements of the Greater Dublin Strategic Drainage Study (GDSDS) The following section outlines the surface water drainage proposals for the development. All SUDS elements have been designed as per the recommendation of the SuDS Manual 2015.

All surface water works including connections will be carried out in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

2.2 Existing Surface Water Network

There is no drainage system currently serving the site. The lands fall to the south east of the site and are bordered by a network of drainage ditches which form a single ditch / watercourse which in turn forms a tributary of the Pinkeen Stream. The watercourse in question joins the Pinkeen Stream approximately 2 km east of the site.

2.3 Proposed Surface Water Network

2.3.1 Overview

The proposed surface water network for the proposed development collects runoff from roofs, roads and other hard standing areas in a sealed system of pipes and gullies. Surface water drainage network of the proposed development connects into proposed surface water network subject to concurrent planning application that serves Catchment 1 of the proposed EngineNode development (Meath County Council Planning Reg. Ref. RA/191593).

The extent of Catchment Area 1 is marked in blue and the approximate proposed development site is marked in green in Figure 2.1 below.

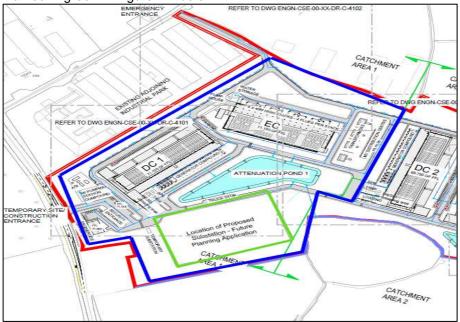


Fig 2.1 – Extract from Drawing No. ENGN-CSE-00-XX-DR-C-4100 indicting Catchment 1

Title: Engineering Planning Report - Drainage & Water Services

Catchment 1 of the proposed data centre development is served by an Attenuation Pond (noted as Attenuation Pond 1 in Fig 2.1 above) which has capacity to store the 1:100 year storm event. The allowable discharge flow rate from Catchment 1 is 24.39 litres/sec.

The calculation of allowable discharge rate and required storage volumes associated with the proposed EngineNode Data Centre Development are addressed in detail in Section 2.4.5 of Document No. RPT-18_086-004 'Engineering Planning Report – Drainage and Water Services' included in Appendix A.

As a result of the proposed development there will be additional hard-standing areas draining to Attenuation Pond 1 however there is sufficient capacity in Attenuation Pond 1 to accommodate the required storage volume for the proposed development. Detailed calculations of the required attenuation storage volume are provided in Section 2.4.5 and Appendix D of this report.

2.3.2 Surface Water Network Design

The pipe network is designed in accordance with the requirement of Table 6.4 of the Greater Dublin Strategic Drainage Study (GDSDS) – See Fig 2.2 below.

Parameter	Surface Water Sewers
Minimum depth	1.2m cover under highways
	0.9m elsewhere
Maximum depth	Normally 5m
Minimum sewer size	225mm
Runoff factors for pipe sizing	100% paved and roof surfaces
	0% off pervious surfaces
Rainfall for initial pipe sizing	50mm/hr rainfall intensity
Minimum velocity (pipe full)	1.0m/s
Flooding	Checks made for adequate protection *
	No flooding for return period less than 30 years except where explicitly planned
	Simulation modelling is required for sites greater than 24ha**
Roughness – ks	0.6mm

Fig 2.2 – GDSDS Pipe Design Criteria

Manholes shall be provided at junctions in the network, at changes of direction and gradient and at no more than 90m centres.

The surface water pipe network has been modelled using WinDesTM software.

2.3.3 SuDS Implementation

The main elements of the SuDS design are "Quantity", "Quality" and "Amenity". "Quantity" refers to the quantity of surface water generated by the development of the discharge to local watercourses and must be restricted to the pre-development greenfield run-off rate. This can be achieved by storage of surface water. The main types of storage used in a SuDS design are Interception Storage and Treatment Storage.

Interception storage includes filter drains where appropriate however site investigation carried out on site indicate that the soil on site has poor permeability (See in Appendix A BRE 365 test results Appendix E to Document No. RPT-18_086-004 'Engineering Planning Report – Drainage and Water Services' included in Appendix A to this report). Treatment storage includes the provision of a permanent wet pool in the attenuation ponds.

2.3.4 Water Quality

In accordance with Appendix E to Volume 2 of the GDSDS of Appendix A and Table 16.4 of the Greater Dublin Regional Drainage Code of Practice it is proposed to provide treatment storage as a wet pool in the attenuation ponds. The wet pool is sized based on an 80% runoff from paved areas during a 15mm rainfall event. The treatment storage volume for the Catchment 1 of the proposed data centre development is outlined in Section 2.4.4 of Document No. RPT-18_086-004 'Engineering Planning Report – Drainage and Water Services' included in Appendix A.

Further surface water treatment techniques incorporated into the design in terms of water quality include redesigning of the proposed (subject to concurrent planning application) SurfSepTM screening unit and petrol interceptor which is to be provided upstream of retention pond.

The SurfSepTM screening units protect downstream receiving systems from fine solids and debris that would otherwise accumulate over time.

It is proposed to provide a Class 1 bypass interceptor upstream of the surface water attenuation system upstream to capture the additional proposed area. The bypass separator is designed to fully treat all flows generated by rainfall rates up to 5mm/hour. This covers 99% of all rainfall events. Petrol interceptor is to be sized in accordance with the EN 858 and PPG3.

Details of the petrol interceptors are provided in Appendix B and details of the proposed SurfSepTM screening units are provided in Appendix C.

2.3.5 Water Quantity

The surface water network has been designed to provide sufficient capacity to contain and convey all surface water runoff associated with the 1 in 100 year event to the proposed (subject to concurrent planning application) Attenuation Pond 1 without any overland flooding. As discussed in Section 2.3.1 the attenuation pond, which serves Catchment 1 of the proposed data centre development has been designed to provide sufficient capacity to accommodate the proposed development. The proposed data centre development allowable discharge rate of 24.36 litres/sec will not be increase as a result of the proposed substation and grid connection development (Refer to Section 2.4.5 of Document No. RPT-18_086-004 'Engineering Planning Report – Drainage and Water Services' included in Appendix A).

The attenuation storage volume required during the 1 in 100 year return period has been simulated using WindesTM software. The result of the analysis is summarised in Table 2.3 below. See Appendix D for details of the WindesTM calculations.

Table 2.3 overleaf summarises the storage volumes associated with the proposed data centre development (Scenario 1) and the proposed data centre and proposed substation and grid connection development combined (Scenario 2).

Clifton Scannell Emerson

Associates

Scenario	Wet Pond Invert Level (m OD)	Outlet Invert Level (m OD)	Ground Level (m OD)	Critical Storm Duration (mins)	High Water Level in 100 year event (m OD)	Attenuation Storage Volume (m ³)
Scenario 1 – Proposed data centre Development	68.275	68.450	70.000	1440	68.922	3,833
Scenario 2 – Proposed data centre and proposed substation and grid connection development combined	68.275	68.450	70.000	1440	69.076	4,937

Table 2.3 – Attenuation Volume Summary

As can be seen in Table 2.3 above Scenario 2 results in an increase in the volume of attenuation storage in Attenuation Pond 1 of 1,104m³ and in a increase in the high water level in a 1 in 100 year storm event of 0.154m. Attenuation Pond 1 has adequate capacity to accommodate the proposed development as the pond will have 0.924m freeboard during the 1 in 100 year storm event during Scenario 2.

In summary the proposed (subject to concurrent planning application) Attenuation Pond 1 has adequate storage capacity to accommodate flows from the proposed substation and grid connection development with no increase in discharge to the adjacent watercourse.

The proposed Surface Water Drainage Network is indicated on Drawing No. A1045-CSE-HEL-XX-DR-C-4700 Combined Services Layout.

3 Foul Water Drainage

3.1 General

A pre-connection enquiry (PCE) form was submitted to Irish Water on 12st August 2019 in relation to water and wastewater demand for the proposed EngineNode development. A Confirmation of Feasibility (CoF) was subsequently obtained from Irish Water on 29th May 2020. The reference number for the CoF is CDS 19006045 which is provided in Appendix C to this report.

3.2 Existing Infrastructure

There is an existing 140mm OD foul water rising main located in the R147 to the east of the site. This rising main is pumped from the Takeda Biologics facility c. 2.5 km to the north of the site to the 9C Trunk Sewer in Mulhuddart (adjacent to the Kepak Facility). The proposed EngineNode data centre development under Meath County Council Reg. Ref. RA/191593 would connect to this 140mm OD foul water rising main by diverting the main into a new strategic pumping station (Referred to as IW Strategic Pumping Station) on site.

3.3 Proposed Foul Water Drainage Network

The proposed substation development will connect to a foul water manhole FMH-6.3 3 proposed under Meath County Council Reg. Ref. RA/191593. From this manhole wastewater flows by 150mms gravity pipe network proposed in data centre development to Site Pumping Station from where it is pumped to IW Strategic Pumping Station. As noted in Section 3.3 the IW Strategic Pumping Station will pump foul water to the 9C Sewer at Mulhuddart.

The locations of the proposed Site Pumping Station, IW Strategic Pumping Station and approximate proposed substation development site (in green) are indicated in Fig 3.1 below.

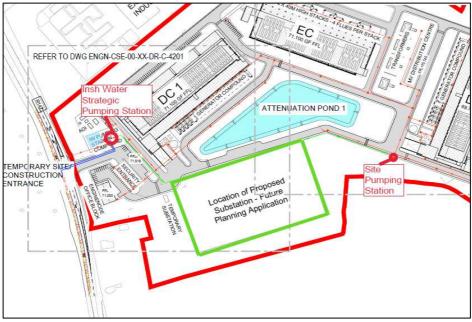


Fig 3.1 – Extract from Drawing No. ENGN-CSE-00-XX-DR-C-4200 indicting Pumping Station Locations

The substation building will be unmanned and will not occupied on a regular basis. A two man crew visiting site for two days per months is estimated to be the anticipated level of occupancy (Average of 1 persons on site per week). As a result this development is not covered by the types of activities listed in Appendix D of the Irish Water Code of Practice for Wastewater Infrastructure. Accordingly, proposed wastewater flows have been based on the assumed usage rates of the appliances in the building. The proposed foul water flows from the development are calculated in Table 3.1 below:-

Appliance	Flow per use (litres)	Average use per week	Weekly Flow (litres)	Average Daily Flow (litres)
WC and WHB*	10	1	10	1.42
Sink**	7	1	7	1.0
Total			16	2.42

*Based on Appendix D of the Irish Water Code of Practice for Wastewater Infrastructure for WC on an amenity site

** Based on water demand for 1 no. meal as per Section 3.28 of Irish Water Code of Practice for Water Infrastructure.

Table 3.1 – Average Foul Water Daily Demand

As can be seen in Table 3.1 the average daily foul water demand of 2.42 litre per day. The total average daily foul water demand for the proposed EngineNode data centre development is 12,250 litres per day (Refer to Section 3.4.2 of Document No. RPT-18_086-004 'Engineering Planning Report – Drainage and Water Services' included in Appendix A) thus the foul water demand for proposed substation development is equivalent to 0.02% of the overall foul water demand for the proposed EngineNode data centre site.

Based on the Colebrook-White Equation a 150mms pipe at a gradient of between 1:82 and 1 :150 provide adequate capacity and maintain velocities of at least 0.75 m/s in accordance with the requirements of Irish Water Code of Practice for Wastewater Infrastructure (Document No. IW-CDS-5030-03).

Due to the severe consequences of a spillage entering the surface water system it is proposed to connect the discharge from the electrical substation transformer bunds to the foul system. This drainage is to pass through a Class 1 Full Retention Oil Separator before entering the foul water network. Details of the proposed full retention separator are provided in Appendix E of this report.

Refer to Drawing No. ENGN-CSE-00-XX-DR-C-4200– Overall Proposed Foul Water Layout included in Appendix B which indicates proposed (subject to concurrent planning application) foul water network.

The proposed Foul Water Drainage Network is indicated on Drawing No. A1045-CSE-HEL-XX-DR-C-2050 Proposed Sub-station Site layout & Services in Appendix B.

4 Water Supply

4.1 General

A pre-connection enquiry (PCE) form was submitted to Irish Water on 12st August 2019 in relation to water and wastewater demand for the proposed EngineNode development. A Confirmation of Feasibility (CoF) was subsequently obtained from Irish Water on 29th May 2020. The reference number for the CoF is CDS 19006045 which is provided in Appendix C to this report.

4.2 Existing Infrastructure

There is an existing 450mms water main located in the R147 which is deemed to be suitable to provide a connection to serve the proposed EngineNode development subject to Meath County Council Planning Reg. Ref. RA/191593.

4.3 Potable Water Supply

The proposed development will connect to the internal EngineNode site water supply network proposed under Meath County Council Reg. Ref. RA/191593. The EngineNode site water supply network will be connected to the existing 450mms Irish Water watermain located in the R147 to the west of the site.

Refer to Drawing No. ENGN-CSE-00-XX-DR-C-4300 – Overall Proposed Watermain Layout included in Appendix B which indicates proposed watermain water network subject to concurrent planning application. An extract from this drawing is provided in Fig 4.1 below which indicated the approximate location of the proposed data centre site connection to the Irish Water Network in blue and the approximate location of the proposed substation development site in green.

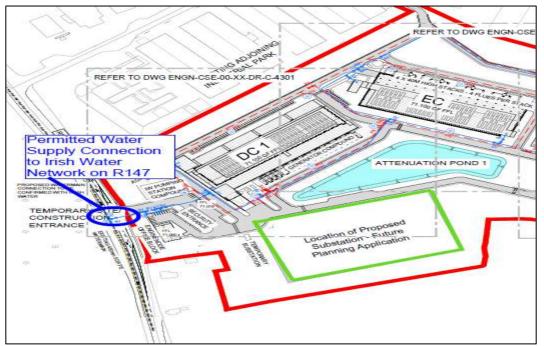


Fig 4.1 – Extract from Drawing No. ENGN-CSE-00-XX-DR-C-4300 indicting proposed connection to Irish Water Network

The substation building will be unmanned and will not occupied on a regular basis. A two man crew visiting site for two days per months is estimated to be the anticipated level of occupancy (Average of 1 persons on site per week). As a result this development is not covered by the types of activities listed in Section 3.28 of the Irish Water Code of Practice for Water Infrastructure. Accordingly, proposed wastewater flows have been based on the assumed usage rates of the appliances in the building. The proposed foul water flows from the development are calculated in Table 4.1 below:-

Appliance	Flow per use (litres)	Average use per week	Weekly Flow (litres)	Average Daily Flow (litres)
WC and WHB*	10	1	10	1.42
Sink**	7	1	7	1.0
Total			16	2.42

*Based on Appendix D of the Irish Water Code of Practice for Wastewater Infrastructure for WC on an amenity site

** Based on water demand for 1 no. meal as per Section 3.28 of Irish Water Code of Practice for Water Infrastructure.

Table 4.1 – Average Water Daily Demand

As can be seen in Table 3.1 the average daily foul water demand of 2.42 litre per day. The total average daily foul water demand for the proposed EngineNode data centre site is 11,250 litres per day (Refer to Section 4.4.1 of Document No. RPT-18_086-004 'Engineering Planning Report – Drainage and Water Services' included in Appendix A) thus the foul water demand for proposed substation development is equivalent to 0.022% of the overall foul water demand for the proposed EngineNode data centre site.

The proposed Water Supply Network is indicated on Drawing No. A1045-CSE-HEL-XX-DR-C-2050 Proposed Sub-station Site layout & Services in Appendix B.

4.4 Fire Flow Requirements

The proposed substation development will be served by a 250mms proposed (subject to concurrent planning application) fire hydrant main which is connected to sprinkler tanks which serve each proposed building. The fire hydrants will be provided at appropriate locations in accordance with the specialist fire protection contractors design and Meath County Council requirements.

5 Flood Risk Assessment

A Strategic Flood Risk Assessment (SFRA) was developed as part of the Meath County Development Plan 2013-2019. In this it shows the site as being outside any identified flood zones and does not indicate the site is at risk from any fluvial, pluvial or coastal flooding event.

A review of available information has identified no flood hazards for the proposed development therefore, in accordance with The Planning System and Flood Risk Management Guidelines for Planning Authorities, the site is deemed to be located within Flood Zone C, where the probability of flooding is low (i.e. less than 0.1% AEP or 1 in 1,000 years). Refer to Figure 5.1 below.

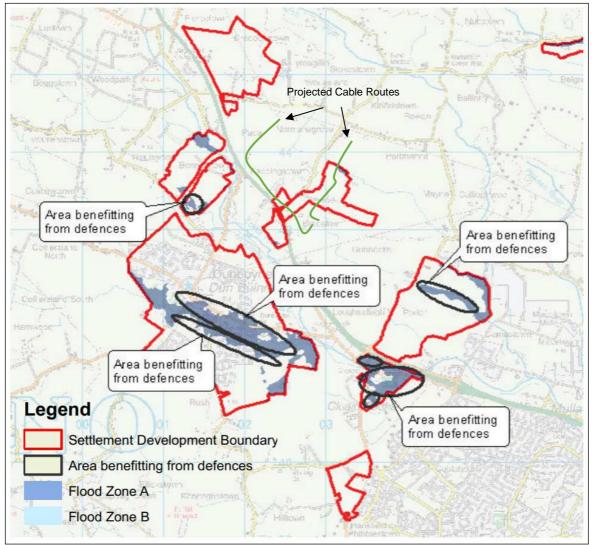
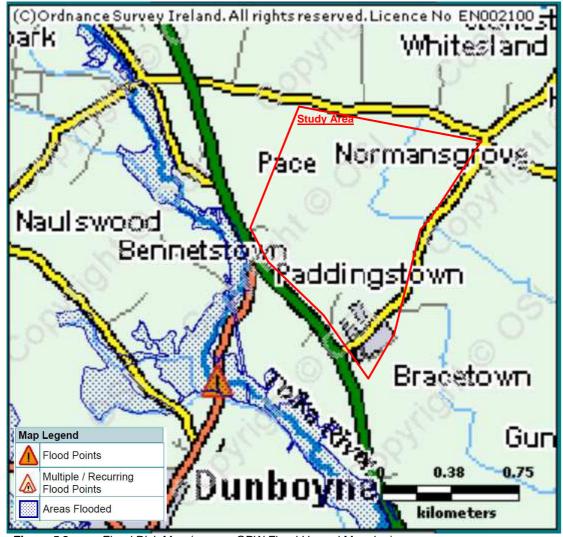



Figure 5.1 Flood Zone Map (source: SFRA Meath County Development Plan).

There are also no historic flood events recorded in the vicinity of the site, as can be seen in Figure 5.2 below.

Figure 5.2 Flood Risk Map (source: OPW Flood Hazard Mapping).

In addition as part of the planning submission for the EngineNode development (proposed under Meath County Council Reg. Ref. RA/191593) a Site-Specific Flood Risk Assessment (SSFRA) was carried out by CSEA. The SSFRA concluded that development on the subject site is appropriate for the site's flood zone category and a justification test as outlined in the Guidelines (OPW Guidelines, 2009, "Planning System and Flood Risk Management Guidelines for Planning Authorities) is not required. The SSFRA is included in Appendix G of this report.

Appendix A – EngineNode Data Storage Engineering Planning Report Drainage and Water Services

Clifton Scannell Emerson Associates

Engineering Planning Report - Drainage & Water Services

EngineNode Data Storage

0 EngineNode **Client: EngineNode**

Date: 14th October 2019

Job Number: 18_086

CONSULTING ENGINEERS

Civil Engineering Structural Engineering

Transport Engineering Engineering

Environmental Project Health Management and Safety

Clifton Scannell Emerson Associates Limited, Consulting Engineers, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland. T. +353 1 2885006 F. +353 1 2833466 E. info@csea.ie W. www.csea.ie

Document Control Sheet

Project Name:	EngineNode Data Storage
Project Number:	18_086
Report Title:	Engineering Planning Report - Drainage & Water Services
Filename:	RPT-18_086-004

Issue No.	Issue Status	Date	Prepared by	Checked by
1.0	DRAFT	03/09/19	CD	PF
1.1	Planning Draft	01/10/19	CD	PF
1.2	Planning Issue	14/10/19	CD	PF

Table of Contents

1	Introduc	ction	. 4
	1.1	Development Description	. 4
	1.2	Existing Land Use	. 4
2	Surface	Water Drainage	. 5
	2.1	General	. 5
	2.2	Drawings	
	2.3	Existing Surface Water Network	. 5
	2.4	Proposed Surface Water Network	. 6
3	Foul Wa	ater Drainage	10
	3.1	General	10
	3.2	Drawings	10
	3.3	Existing Infrastructure	10
	3.4	Proposed Foul Water Drainage Network	10
4	Water S	Supply	14
	4.1	General	14
	4.2	Drawings	14
	4.3	Existing Infrastructure	
	4.4	Proposed Water Supply	14
5	Flood R	lisk Assessment	16
App	endix A	 Minutes of Meeting with Meath County Council 	
App	endix B	- Petrol Interceptor Details	
App	endix C	– SurfSep™ Details	
App	endix D	– Hydrobrake™ Details	
App	endix E	- Site Investigation Information	
App	endix F	- Surface Water Drainage Calculations	
App	endix G	-Swale Design Calculations	
		- Foul Water Drainage Calculations	
		-Water Supply Calculations	
		– IW PCE Form	

1 Introduction

This report is being submitted as part of the planning application for EngineNode Limited for the proposed data storage facility and energy centre development on site at Gunnocks, Clonee, Co. Meath. The report outlines the proposals for drainage services, water supply and flood risk assessment for the development. The proposed development site is approximately 25 Hectares in size.

1.1 Development Description

The proposed development consists of four number two-storey data storage buildings, each containing data halls within each building, a single storey energy centre building, an AGI, HV electrical substation, and ancillary services.

The campus will have an internal road network comprised of impermeable asphalt roads and concrete yard areas depending on their location and access usage. The site perimeter shall consist of extensive berming and landscaping (natural species), with 3-metre-high security fencing and associated security infrastructure. The main site access shall be comprised of 3 metre railing and gates, a security entrance building and associated infrastructure.

The four-number data storage buildings shall all have the same building footprint and elevation. The data storage facilities shall be comprised of two storey cladded buildings, each 25.0 metres high. Each data storage facility shall have ancillary storage tanks adjacent to the building. These will include a sprinkler tank, humidifier water tanks and diesel tanks/delivery yard.

The proposed energy centre is comprised of a single storey cladded building which shall be 20.50 metres high with a set-back plant screen at 25.0 metres. The energy centre shall be comprised of gas fired engines. These engines shall be served by 4 no. 40 metre high flue stacks. The energy centre shall have associated transformers in bunded areas along with a single storey over basement MV distribution building. The energy centre shall have an ancillary building with offices and welfare facilities and associated parking.

To facilitate the energy centre an Above Ground (Gas) Installation (AGI) shall be provided along the north west site boundary.

A separate planning application will be made to An Bord Pleanála under Section 182A of the Planning and Development Act 2000 (as amended), to construct a new HV substation compound and associated underground HV cables.

1.2 Existing Land Use

The existing site is a greenfield site which is currently used as agricultural land.

2 Surface Water Drainage

2.1 General

The proposed development will provide attenuation in compliance with the requirements of the Greater Dublin Strategic Drainage Study (GDSDS) The following section outlines the surface water drainage proposals for the development. All SUDS elements have been designed as per the recommendation of the SuDS Manual 2015.

All surface water works including connections will be carried out in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

A pre-planning meeting has taken place with Mr. Paul Aspell, Executive Engineer, of Meath County Council, on 18th July 2019 and with follow up correspondence with Mr. Philip Traynor, Area Engineer, on 20th August 2019. Minutes of meetings and correspondence with Meath County Council is included in Appendix A of this report.

2.2 Drawings

The following drawings provided in support of this planning application are applicable to surface water drainage:-

- ENGN-CSE-00-XX-DR-C-1010 Surface Water Outfall to Pinkeen Stream
- ENGN-CSE-00-XX-DR-C-4100 Proposed & Existing Surface Water Drainage Overall Layout Plan
- ENGN-CSE-00-XX-DR-C-4101 Proposed Surface Water Drainage Layout Plan Sheet 1 of 4
- ENGN-CSE-00-XX-DR-C-4102 Proposed Surface Water Drainage Layout Plan Sheet 2 of 4
- ENGN-CSE-00-XX-DR-C-4103 Proposed Surface Water Drainage Layout Plan Sheet 3 of 4
- ENGN-CSE-00-XX-DR-C-4104 Proposed Surface Water Drainage Layout Plan Sheet 4 of 4
- ENGN-CSE-00-XX-DR-C-4903 Proposed Standard Trench Details
- ENGN-CSE-00-XX-DR-C-4908 Proposed Road and Drainage Details
- ENGN-CSE-00-XX-DR-C-4910 Proposed Surface Water Hydrobrake Manhole, Surfsep & Petrol Interceptor Details
- ENGN-CSE-00-XX-DR-C 4801- Attenuation Pond Cross-Sections Sheet 1 of 2
- ENGN-CSE-00-XX-DR-C 4802- Attenuation Pond Cross-Sections Sheet 2 of 2

2.3 Existing Surface Water Network

There is no drainage system currently serving the site. The lands fall to the south east of the site and are bordered by a network of drainage ditches which form a single ditch / watercourse which in turn forms a tributary of the Pinkeen Stream. The watercourse in question joins the Pinkeen Stream approximately 2 km east of the site.

2.4 Proposed Surface Water Network

2.4.1 Overview

The proposed surface water networks for the development collect runoff from roofs, roads and other hard standing areas in a sealed system of pipes and gullies. There are three separate surface water drainage networks in the proposed development which flow to separate surface water attenuation ponds from which attenuated flows are discharged, via carrier drains, to the adjacent ditch/watercourse, described in Section 2.3, along the southern boundary of the site.

2.4.2 Surface Water Network Design

The pipe network is designed in accordance with the requirement of Table 6.4 of the Greater Dublin Strategic Drainage Study (GDSDS) – See Fig 2.1 below.

Parameter	Surface Water Sewers
Minimum depth	1.2m cover under highways
	0.9m elsewhere
Maximum depth	Normally 5m
Minimum sewer size	225mm
Runoff factors for pipe sizing	100% paved and roof surfaces
	0% off pervious surfaces
Rainfall for initial pipe sizing	50mm/hr rainfall intensity
Minimum velocity (pipe full)	1.0m/s
Flooding	Checks made for adequate protection *
	No flooding for return period less than 30 years except where explicitly planned
	Simulation modelling is required for sites greater than 24ha**
Roughness – ks	0.6mm

Fig 2.1 – GDSDS Pipe Design Criteria

Manholes shall be provided at junctions in the network, at changes of direction and gradient and at no more than 90m centres.

In order to reduce the extent of the earthworks required for the attenuation ponds the dock levellers serving the buildings are to be drained via pumping to the gravity system (the exception to this is DC 3 which can be drained by gravity.

The surface water pipe network has been modelled using WinDes[™] software.

2.4.3 SuDS Implementation

The main elements of the SuDS design are "Quantity", "Quality" and "Amenity". "Quantity" refers to the quantity of surface water generated by the development of the discharge to local watercourses, and must be restricted to the pre-development greenfield run-off rate. This can be achieved by storage of surface water. The main types of storage used in a SuDS design are Interception Storage and Treatment Storage.

Interception storage includes filter drains where appropriate however site investigation carried out on site indicate that the soil on site has poor permeability (See BRE 365 test results in Appendix E). Treatment storage includes the provision of a permanent wet pool in the retention ponds.

2.4.4 Water Quality

In accordance with Appendix E to Volume 2 of the GDSDS and Table 16.4 of the Greater Dublin Regional Drainage Code of Practice it is proposed to provided treatment storage as a wet pool in the retention ponds. The wet pool is sized based on an 80% runoff from paved areas during a 15mm rainfall event. The treatment storage volumes for each of the three catchments are outlined in Table 2.2 below.

Catchment	Catchment Area (m²)	Retention Pond Base Area (m ²)	Treatment Volume Required (m³)	Depth of Wet Pool (m)
Catchment 1	68,890	4,762	826	0.175
Catchment 2	38,690	1,582	464	0.290
Catchment 3	45,900	2,405	550	0.230

Table 2.1 – Treatment Volume Summary

Further surface water treatment techniques incorporated into the design in terms of water quality include the provision of SurfSep[™] screening units and petrol interceptors which are to be provided upstream of all retention ponds.

The SurfSep[™] screening units protect downstream receiving systems from fine solids and debris that would otherwise accumulate over time.

It is proposed to provide a Class 1 full retention separators downstream of any fuel unloading area in accordance with Section 20 of the Greater Dublin Regional Code of Practice. The full retention separator is designed to treat the full design flow that can be delivered in the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 50mm/hour.

It is proposed to provide a Class 1 bypass interceptor upstream of the surface water attenuation system upstream of the surface water attenuation system to capture the

remainder of the roads and car parking areas. The bypass separator is designed to fully treat all flows generated by rainfall rates up to 5mm/hour. This covers 99% of all rainfall events. All petrol interceptors are to be sized in accordance with the EN 858 and PPG3.

Details of the petrol interceptors are provided in Appendix B and details of the proposed SurfSep[™] screening units are provided in Appendix C.

2.4.5 Water Quantity

The surface water network has been designed to provide sufficient capacity to contain and convey all surface water runoff associated with the 1 in 100 year event to the attenuation basins without any overland flooding. This complies with Criterion 3 of Table 6.3 of Volume 2 the GDSDS.

All calculations have allowed for an additional allowance of 10% in rainfall intensities to allow for climate change as per Table 6.1 of Volume 2 of the GDSDS.

The allowable discharge rate from the site (QBAR) has been calculated in accordance with the following equation as per Section 6.3.1.2.2 of the GDSDS:-

QBAR = 0.00108AREA^{0.89} SAAR^{1.17} SOIL^{2.17}

Where

QBAR = Mean Annual Flood Flow (m³/s) AREA = Area of catchment (km²) (Initially calculated based on 50 hectares and adjusted pro-rata to catchment area). SAAR = Standard Annual Rainfall (mm) Calculated based on Met Eireann Data) (Site Co-Ordinates E = 302884; N = 243109) (<u>https://www.met.ie/climate/what-wemeasure/rainfall</u>) SOUL = Soil index (based on site investigation data and Table D1 in Appendix D to

SOIL = Soil index (based on site investigation data and Table D1 in Appendix D to Volume 2 of the GDSDS (See Figure 2.2 below).

SOIL	WRAP	Runoff	SOIL Value	Soil Characteristics
1	Very high	Very low	0.15	Sandy, well drained
2	High	Low	0.30	Intermediate soils (sandy)
3	Moderate	Moderate	0.40	Intermediate soils (silty)
4	Low	High	0.45	Clayey, poorly drained
5	Very low	Very high	0.50	Steep, rocky areas

Fig 2.2 – GDSDS Table D1

It should be noted that there are different soil characteristics across the site. As discussed with Mr. Paul Aspell different soil index values can be applied to the particular catchments subject to the site investigation data available. As can be seen from the site investigation data provided in Appendix E to this report soil characteristics in the western part of the site have evidence of sandy gravelly clay whilst in the eastern part of the site silt is encountered.

The allowable discharge rates from the different catchment on site are summarised in Table 2.2 overleaf.

Catchment	AREA (km²)	SAAR (mm)	SOIL	QBAR (for 50 Ha) (m³/s)	Total Catchment Area (Ha)	QBAR (m³/s)	QBAR (I/s)
Catchment 1	0.5	815	0.3	0.11	11.2	0.024	24.39
Catchment 2	0.5	815	0.4	0.20	4.77	0.019	19.37
Catchment 3	0.5	815	0.4	0.20	5.60	0.029	29.37

-			Discharge		A	
- 10	anie 22 – 4	NIOWADIE	Discharde	$(\Box \mathbf{K} \Delta \mathbf{K})$	Sum	marv
			Districting ge		Oun	

Discharge from the proposed wet ponds is controlled by a flow control devices downstream of the each pond. Details of each flow control device is provided in Appendix D of this report.

The attenuation storage volume required during the 1 in 100 year return period has been simulated using Windes[™] software. The results of the analysis are summarised in Table 2.3 below. See Appendix F for details of the Windes[™] calculations.

Catchment	Wet Pond Invert Level (m OD)	Outlet Invert Level (m OD)	Ground Level (m OD)	Critical Storm Duration (mins)	High Water Level in 100 year event (m OD)	Attenuation Storage Volume (m ³)
Catchment 1	68.275	68.450	70.000	1440	68.922	3,833
Catchment 2	67.160	67.450	69.000	480	68.167	1,344
Catchment 3	66.020	66.250	68.350	960	66.784	1,760

Table 2.3 – Attenuation Volume Summary

In addition to the three primary drainage catchments on site there are two further areas of the site which are captured in separate networks. The area around the future MV substation in the south west of the site will be separate planning application while the access road which connects to the L1010 in the north west of the site will discharge to swale locally. Outflow from this swale to the adjacent watercourse will be attenuated to 0.86 l/sec and will have approximately 90 m³ of storage to accommodate the 1 in 100 year storm event. Swale calculations are provided in Appendix G.

3 Foul Water Drainage

3.1 General

A pre-connection enquiry (PCE) form was submitted to Irish Water on 12st August 2019 which addressed water and wastewater demand for the development. The reference number for the Pre-Connection Enquiry is CDS 19006045. A copy of the PCE is provided in Appendix J to this report.

3.2 Drawings

The following drawings provided in support of this planning application are applicable to wastewater drainage:-

- ENGN-CSE-00-XX-DR-C-4200 Proposed & Existing Foul Water Drainage Overall Layout Plan
- ENGN-CSE-00-XX-DR-C-4201 Proposed Foul Water Drainage Layout Plan Sheet 1 of 3
- ENGN-CSE-00-XX-DR-C-4202– Proposed Foul Water Drainage Layout Plan Sheet 2 of 3
- ENGN-CSE-00-XX-DR-C-4203 Proposed Foul Water Drainage Layout Plan Sheet 3 of 3
- ENGN-CSE-00-XX-DR-C-4903 Proposed Standard Trench Details

3.3 Existing Infrastructure

There is an existing 140mms OD foul water rising main located in the R147 to the east of the site. This rising main to pumped from the Takeda Biologics facility c. 2.5 km to the north of the site to the 9C Trunk Sewer in Mulhuddart (adjacent to the Kepak Facility). Following discussions with Mr. Paul Aspell, Executive Engineer, of Meath County Council, it was agreed that the proposed development would connect to this 140mms OD foul water rising main by diverting the main into a new intermediate pumping station (Referred to as IW pumping station) on site. Details of this proposal have been included in the PCE submitted to Irish Water (IW) and it is anticipated that the intermediate pumping station will be vested by Irish Water upon completion.

3.4 Proposed Foul Water Drainage Network

3.4.1 Overview

The proposed wastewater drainage network collects domestic wastewater flows from the administration block of the proposed Data Storage Facilities. In addition rainfall which pass through in the generator exhaust stacks is collected in the wastewater network which discharges to hydrocarbon interceptor before connecting to the main wastewater pipe network.

Due to site topography it is necessary to provide a wastewater pumping station (referred to as Site Pumping Station) to serve the development. This pumping station is located to the to the south west of DC 2 and pumps by means of an 80mms rising main to the IW Pumping Station at the western boundary of the site. As noted in Section 3.3 the IW Pumping Station will pump foul water to the 9C Sewer at Mulhuddart.

3.4.2 Daily Foul Water Demand

Foul demand for the proposed development has been estimated using Appendix D of the Irish Water Code of Practice for Wastewater Infrastructure (Document No. IW-CDS-5030-03). The aforementioned document states that the recommended wastewater daily loading rate for industrial developments without canteen facilities is 50 litres per person.

The staff occupancy for the development is 245 persons thus the wastewater loading for the proposed development is calculated in Table 3.1 below:-

Building	Population	Daily Flow (litres / day)	Average Flow (litres / sec)
DC 1	50	2,500	0.029
DC 2	50	2,500	0.029
DC 3	50	2,500	0.029
DC 4	50	2,500	0.029
Energy Centre	30	1,500	0.017
Admin / Security	15	750	0.009
Total	245	12,250	0.14

 Table 3.1 Average Foul Loading

3.4.3 Foul Water Pipe Design

The network has been designed to ensure that the foul discharge maintains a self-cleansing velocity. The proposed network adheres to the minimum pipe gradients set out in Table 6 of the "Building Regulations Technical Guidance Document H". It is proposed to take all foul drainage from the buildings by means of 100mms pipes with minimum gradients of 1:60 which connect to 150mms pipes laid at minimum gradients of 1:100. The key design parameters are summarised as follows:-

- Minimum Self-Cleansing Velocity for Gravity Sewer = 0.75 m/s;
- Minimum gradient of gravity sewer = 1:150
- Roughness Co-efficient for Gravity Sewer (k_s) = 1.5mm
- Peak Design Flow = EN 12056 method

Peak foul water flow from the proposed development has been calculated using the discharge units methodology outlined in EN 12056-2. The number of appliances are not finalised at this stage that the Discharge Units have been estimated based on similar projects. The peak foul water flow from the development is estimated at 8.57 litres /sec (Please refer to Appendix H for calculations).

Based on the Colebrook-White Equation a 150mms pipe at a gradient of between 1:82 and 1 :150 provide adequate capacity and maintain velocities of at least 0.75 m/s in accordance with the requirements of Irish Water Code of Practice for Wastewater Infrastructure (Document No. IW-CDS-5030-03. Pipe network calculations are provided in Appendix H.

3.4.4 Foul Water Pumping Station Requirements (IW Pumping Station)

As noted in Section 3.3 Meath County Council have advised that the preferred foul water outfall from the site is to discharge into the existing 140mm OD foul water rising main located in the R147 to the east of the site. This rising main connects the Takeda Biologics plant in Dunboyne with the 9C Trunk Sewer in Mulhuddart (adjacent to the Kepak Facility). In order to achieve this connection it is necessary to provide an intermediate pumping station on the 140mm OD foul water rising main. This intermediate pumping station is referred to as the IW Pumping Station.

The detail design of this pumping station is to be developed a part of the IW connection process and design information associated with the IW Pumping Station is provided in the flow balancing and pumping section of the PCE which is provided in Appendix J to this report.

A high level assessment has been carried out for the purposes of determining what type of pumping station is required. Section 5 of the Irish Water Code of Practice for Wastewater Infrastructure (Document No. IW-CDS-5030-03) states that Type 3 pumping stations will have incoming peak flows in excess of 1 litre / sec and an overall power capacity less than 20 kW installed power. Based on an estimated flow rate of 14 litres / sec (to achieve a minimum velocity of 1.1 m/sec for a 140mms OD Rising Main) and an estimate total head loss of 50 m the installed power is estimated using the equation below.

 $P = y x Q x H_{TOTAL} / E where$

 $\begin{array}{l} \mathsf{P} = \mathsf{Power} \ (\mathsf{in} \ \mathsf{kW}) \\ \mathsf{Q} = 14 \ \mathsf{litres} \ /\mathsf{sec} \Rightarrow 0.014 \ \mathsf{m}^3/\mathsf{sec} \\ \mathsf{Y} = \mathsf{Unit} \ \mathsf{weight} \ \mathsf{of} \ \mathsf{water} = 9.81 \ \mathsf{kN/m}^2 \\ \mathsf{H}_{\mathsf{TOTAL}} = 50\mathsf{m} \ (\mathsf{Estimate} \ \mathsf{based} \ \mathsf{on} \ \mathsf{topography} \ \mathsf{and} \ \mathsf{friction} \ \mathsf{loss} \ \mathsf{for} \ \mathsf{140mm} \otimes \ \mathsf{OD} \ \mathsf{which} \ \mathsf{a} \\ \mathsf{flow} \ \mathsf{rate} \ \mathsf{of} \ \mathsf{14} \ \mathsf{litres} \ /\mathsf{sec}) \\ \mathsf{E} = \mathsf{Efficiency} = \mathsf{80\%} \end{array}$

 \Rightarrow 9.81 x 0.014 x 50 / 0.8 = 8.5 kW < 20 kW

Further to the above it is assumed for planning purposes that the proposed IW Pumping Station will be a Type 3 pumping station as per Section 5 of the Irish Water Code of Practice for Wastewater Infrastructure (Document No. IW-CDS-5030-03) however the foregoing is subject to design development with IW. As per consultation with a Meath County Council a spur is to be left on the site boundary to facilitate a connection from Bracetown Business Park and 'The Hub' Logistics Park.

3.4.5 Foul Water Pumping Station Requirements (Site Pumping Station)

Due to site topography and the need to maintain pipe gradients which maintain adequate self-cleansing velocity (as described in Section 3.4.3 above) it is necessary to provide a wastewater pumping station to serve the development. The pumping station is referred to as the Site Pumping Station. The Site Pumping Station is located adjacent to DC 2 immediately downstream of manhole FMH 1.12 and will discharge via an 80mms rising main which outfalls via a stand-off manhole to the east of DC 1 where it outfalls to the a gravity pipe to the Irish Water Pumping Station. The key design parameters for the wastewater pumping station and rising main are summarised as follows:-

- Storage Volume (24 hours) = 12250 litres = 12.25m³
- Flow Rate (Q) = 6 litres/sec
- Rising Main Diameter = 80mm
- Rising Main Length = 390m
- Rising Main Volume = 2.0m³
- No. of times Rising Main empties per day = 6
- Mean Rising Main Velocity = 1.2 m/sec
- Roughness Value (Ks) = 0.15mm
- Static Head = 7m
- Friction Head Loss (FHL) (Estimate based on Colebrook-White) = 1m/42m = 9.2m
- Fitting (Estimate) = 0.46m (5% of FHL)
- Total Estimated Design Head = 11.23m approx. (Subject to Detailed Design).

It is envisaged that a proprietary package pumping station solution will be developed at detailed design stage which takes account of the above design criteria

3.4.6 Pollution Control Measures on Foul Water Network

An additional foul sewer is to be provided to the north of the proposed building in order to capture possible contaminated rainwater from the generator flue stacks. The drainage from flues is to pass into a Class 1 full retention separator located downstream of the flue stacks serving each building.

4 Water Supply

4.1 General

A pre-connection enquiry (PCE) form was submitted to Irish Water on 12st August 2019 which addressed water and wastewater demand for the development. The reference number for the Pre-Connection Enquiry is CDS 19006045. A copy of the PCE is provided in Appendix J to this report.

4.2 Drawings

- ENGN-CSE-00-XX-DR-C-4300 Proposed & Existing Water Supply Overall Layout Plan
- ENGN-CSE-00-XX-DR-C-4301 Proposed Water Supply Layout Plan Sheet 1 of 4
- ENGN-CSE-00-XX-DR-C-4302– Proposed Water Supply Layout Plan Sheet 2 of 4
- ENGN-CSE-00-XX-DR-C-4303 Proposed Water Supply Layout Plan Sheet 3 of 4
- ENGN-CSE-00-XX-DR-C-4304 Proposed Water Supply Layout Plan Sheet 4 of 4
- ENGN-CSE-00-XX-DR-C-4903 Proposed Standard Trench Details

4.3 Existing Infrastructure

There is an existing 450mms water main located in the R147. Meath County Council have indicated at the preliminary drainage and water services pre-planning meeting on 18th July 2019 that this watermain is suitable to provide a connection to serve the development subject to agreement with Irish Water.

4.4 Proposed Water Supply

It is proposed to connect to the existing 450mms main with a new 250mms which will serve the data storage facilities, energy centre and administration building. Water supply connections will also be provided to the security gate houses.

4.4.1 Domestic Water Demand

Domestic water demand for the proposed development has been estimated using Section 3.28 of the Irish Water Code of Practice for Water Supply Infrastructure (Document No. IW-CDS-5020-03). The aforementioned document states that the recommended wastewater daily loading rate for industrial developments without canteen facilities is 45 litres per person.

The staff occupancy for the development is 245 persons thus the wastewater loading for the proposed development is calculated in Table 4.1 overleaf:-

Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Building	Population	Daily Demand (litres / day)	Average Demand (litres / sec)
DC 1	50	2,250	0.026
DC 2	50	2,250	0.026
DC 3	50	2,250	0.026
DC 4	50	2,250	0.026
Energy Centre	30	1,350	0.016
Admin / Security	15	675	0.008
Total	245	11,250	0.12

Table 4.1 Water Supply Demand

Peak demand for the proposed development has been calculated using the methodology outlined in EN 806. The number of appliances are not finalised at this stage that the Loading Units have been estimated based on similar projects. The peak water demand from the development is estimated at 1.5 litres /sec (Please refer to Appendix I for calculations).

4.4.2 Industrial Water Demand

The industrial water peak flow rate occurs when all evaporative coolers in AHU's and CRAH's units call for cooling during hot weather events when the temperature is above 25° Celsius. This peak flow rate of circa 97 litres / sec will occur for an estimate 20 minutes and then drop off to an estimated for a rate of 60.52 litres / sec. On a peak day it is estimated that the system will operate at 60.52 litres / sec for 6 hours. Detailed calculations demonstrating the forgoing have been submitted to Irish Water in support of the PCE.

4.4.3 Fire Hydrant Main

The proposed development will be served by a 250mms fire hydrant main which is connected to sprinkler tanks which serve each building. The site wide hydrant main will also serve the sprinkler system for the energy centre. The fire hydrants will be provided at appropriate locations in accordance with the specialist fire protection contractors design and Meath County Council requirements

5 Flood Risk Assessment

The Tolka River is the principal surface water body in the area, at its closest point it is approximately 50m south of the Master Plan site (south of the M3 motorway embankment). It rises southeast of Dunshaughlin, County Meath and flows in a south easterly direction through County Meath, via Clonee where it is joined by the Clonee Stream and Pinkeen River and flows on to Dublin where it enters Dublin Bay between East Wall and Fairview.

The Tolka is fed by, amongst others, the Portan Stream (a tributary of the Pinkeen River which is located 1.2 km to the east of the Master Plan site) and the Pace Stream, which rises on the south eastern portion of the Master Plan site.

While CFRAM mapping was produced for this area, this has currently been withdrawn with the available map displaying the following text:

"This draft flood map is under review following an objection, submission and/or further information received as part the statutory consultation on the draft maps. It may be amended prior to finalisation".

A Strategic Flood Risk Assessment (SFRA) was developed as part of the Meath County Development Plan 2013-2019. In this it shows the site as being outside any identified flood zones and does not indicate the site is at risk from any fluvial, pluvial or coastal flooding event.

No historic flood events have been recorded within the confines of the subject site. There are two recorded fluvial flood events, approximately 200m to the west, within the immediate environs of the Tolka River, which occurred in 2000 and 2002 as a result of heavy rainfall. The OPW flood map of the site area is depicted in Figure 5.1 below.

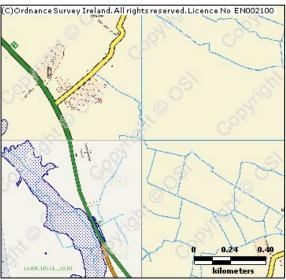


Figure 5.1 OPW Flood Map

The subject site and the Hub Logistics Park are located at the source of the Pinkeen Stream, which discharges in a southeasterly direction, through zoned lands which are currently under development, into the Tolka River.

Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

A review of available information has identified no flood hazards for the proposed development therefore, in accordance with The Planning System and Flood Risk Management Guidelines for Planning Authorities, the site is deemed to be located within Flood Zone C, where the probability of flooding is low.

Appendix A – Correspondence with Meath County Council

Action by

Date: 18/07/19

Ref: MTG-18_086-002

MINUTES OF MEETING

PROJECT:	18_086 – EngineNode Data Centre	Date:	18/07
Situated at:		Time:	3pm
For:	Clifton Scannell Emerson Associates	Ref:	MTG-
Location:	Meath County Council Head Office		
Title:	Preliminary Drainage and Water Supply Meeting		
Subject:	Drainage and Water Supply		
Next meeting:	N/A		

Attendance:

Paul Aspell (PA)	Meath County Council	
Peter Fagan (PF)	CSEA	
Laurence McCrudden (LMcC)	CSEA	
Conor Doherty (CD)	CSEA	
Apologies:		

Points Discussed

1	Site Masterplan	
1.1	LMcC / PF explain the site masterplan which comprises of the development of 4 no. Data Centre buildings, 1 no. Energy Centre building, an MV substation and various ancillary buildings. The site is approximately 25 hectares in area and is located at Bracetown, Co. Meath.	Note
2	Surface Water Drainage (Outfall to Pinkeen Stream)	
2.1	CD explained that the existing lands fall in a south easterly direction towards a system of ditches / watercourses which converge to a ditch in the south east corner of the site which flows in a south easterly direction towards the Pinkeen Stream.	Note
2.2	South east of the site the existing ditch / watercourse traverses lands which are currently either part of the existing Facebook Data Centre campus, lands subject to planning application(s) for future development by Facebook and other 3 rd party lands. The hedgerows are indicated as 'to be protected' on the landscaping drawings provided in support of the Facebook Project Runways Extension planning application (Reg Ref RA180671). Reference to this planning application should be made in the Drainage Report.	Note
2.3	PA indicated CSEA should liaise with Area Engineer Mr. Phillip Traynor in relation to the outfall in order to establish if any other issues exist. PA to send contact details to CSEA	MCC
3	Surface Water Drainage (Scheme Design)	
3.1	CD explain there will be 4 drainage catchments in the development. All catchments will be attenuated before discharging to the ditch / watercourse which runs along the southern boundary of the site. Attenuation systems will typically be ponds with the exception of the catchment serving the MV substation which will most likely be a storm tech system due to the nature of the development in this section of the site.	Note
3.1	CD noted that site investigation has been carried out on site and queried if the site investigation information could be used to establish the soil factor required to	Note

		Associates
	calculate QBAR. Different soil conditions encountered in the east and west sections of the site so different allowable discharge rates may arise between different site catchments. PA had no objection to this approach provided information and calculations are provided in supporting documentation.	, 1000014100
3.2	PA indicated MCC's preference is to have petrol interceptors located upstream of attenuation systems.	Note
3.3	CD explained that surface water collected in the generator exhaust stacks will drain to a foul drain due to the potential presence of soot / hydrocarbons. A petrol interceptor will be fitted to any foul drains connected to exhaust stacks.	Note
3.4	CD explained the design intent for re-fuelling areas and fuel tank bunds. No gravity outlet from bund which will be inspected/tested after rainfall event. If oil present it will be disposed of off-site. If clean rainwater will be pumped to adjacent gully. Truck parking and gullies adjacent to bund to discharge to the surface water network via a forecourt interceptor (10,000 litre oil capacity). PA satisfied with this design approach.	Note
3.5	All AHU's and CRAH air conditioning units to drain to surface water drainage network.	Note
4	Foul Water Drainage	
4.1	Foul drainage from site will need to be pumped to nearest outfall. Foul sewer, pumping station and rising main design to be developed in accordance with Irish Water (IW) Code of Practice. Flow metering to be provided at pumping station if required by IW.	Note
4.2	The location of the nearest foul sewer outfall is unclear. Adjacent developments at Takeda and Facebook are pumping to the 9C gravity sewer in Damastown / Blanchardstown. The potential solutions are outlined below	Note
	 Pump to gravity outfall which discharges to pumping station which serves Takeda c.3km to the north. Pump to gravity outfall which discharge to Kilbride pumping station c.5km to the east. Pump to 9C sewer in Damastown c.3km to the south east. 	
4.3	MCC to liaise with Mr. Paul Fuller of IW regard suitable foul sewer connection point.	MCC
4.5	CSEA to submit Pre-Connection Enquiry (PCE) Form to IW.	CSEA
4.6	PA noted that night-time pumping only is normally stipulated for discharge to 9C Sewer.	Note
5	Water Supply	
5.1	450mms watermain located in the R147 adjacent to the site. PA indicated that this is suitable to provide supply to the development. MCC to forward drawings of infrastructure installed in R147.	MCC
5.2	Bulk meter to be provided at tie-in to network.	Note
5.3	CSEA to submit Pre-Connection Enquiry (PCE) Form to IW.	CSEA
5.4	Particular requirements in relation to valving etc. to be determined by IW during connection enquiry process.	Note
6	General	
6.1	PA noted that MCC can facilitate a further meeting mid-August when the design is further developed.	Note

Conor Doherty

From:	Philip Traynor <philip.traynor@meathcoco.ie></philip.traynor@meathcoco.ie>
Sent:	Tuesday 20 August 2019 09:29
То:	Conor Doherty; David Keyes
Subject:	FW: 18_086 - EngineNode Data Centre
Attachments:	ENGN-CSE-00-XX-DR-C-1010 - Surface Water Outfall to Pinkeen Stream.pdf

Conor,

I am not aware of any legacy issues regarding flooding at this location, however, by way of this email, I have forwarded on to David Keyes, SEO, Environment for follow up. Regards, Phillip

From: Conor Doherty [mailto:Conor.Doherty@csea.ie]
Sent: 19 August 2019 14:32
To: Philip Traynor
Subject: FW: 18_086 - EngineNode Data Centre

Philip,

Just to follow up our phone call this morning we would be grateful if you could advise if there are any issues with discharging attenuated surface water flow to the ditch/watercourse shown in blue on the attached drawing.

If you would like to meet to discuss please let us know.

Regards,

Conor

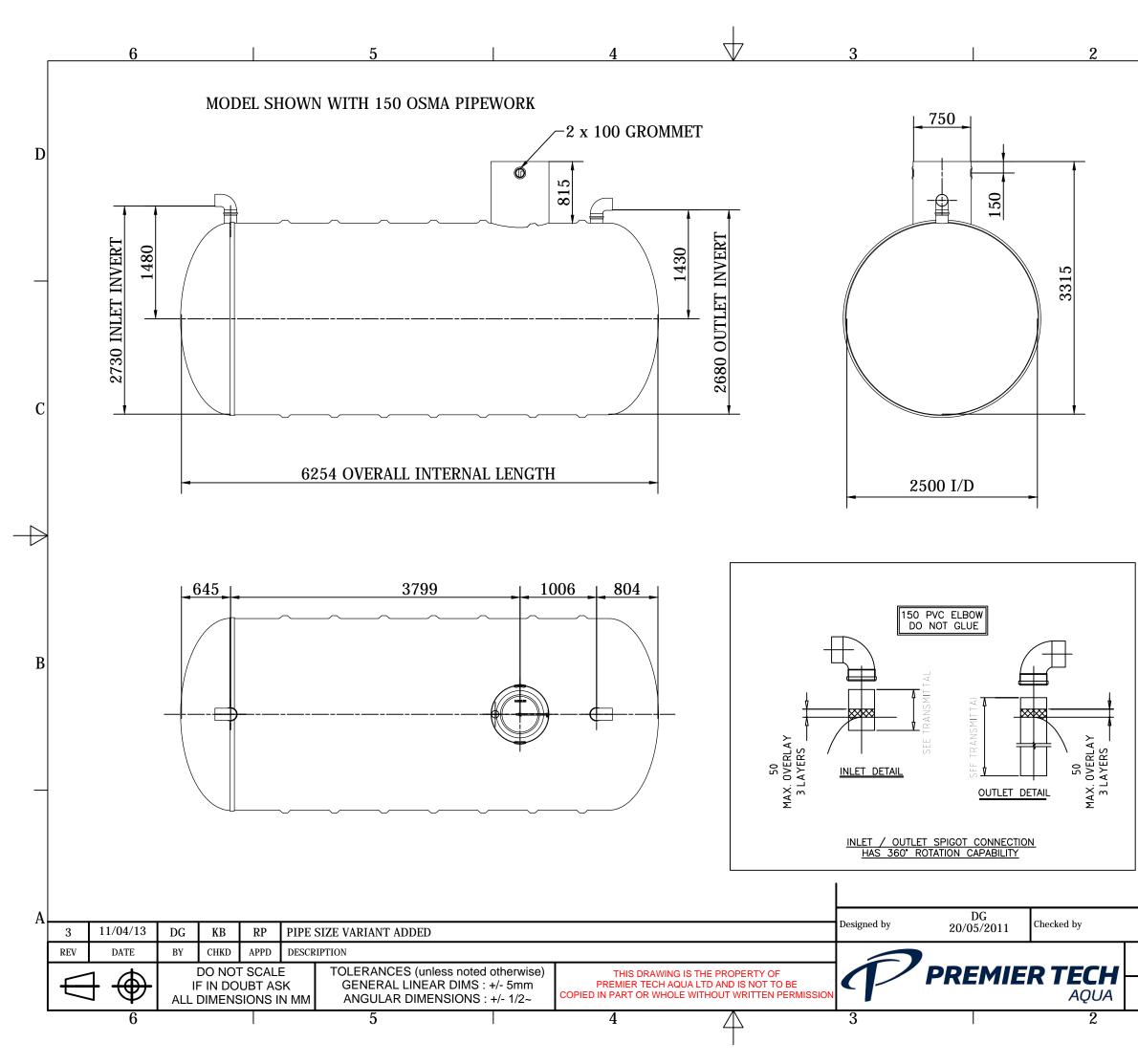
From: Conor Doherty
Sent: Friday 16 August 2019 11:46
To: Philip.traynor@meathcoco.ie
Cc: Laurence McCrudden <Laurence.McCrudden@csea.ie
Subject: 18_086 - EngineNode Data Centre</pre>

Philip,

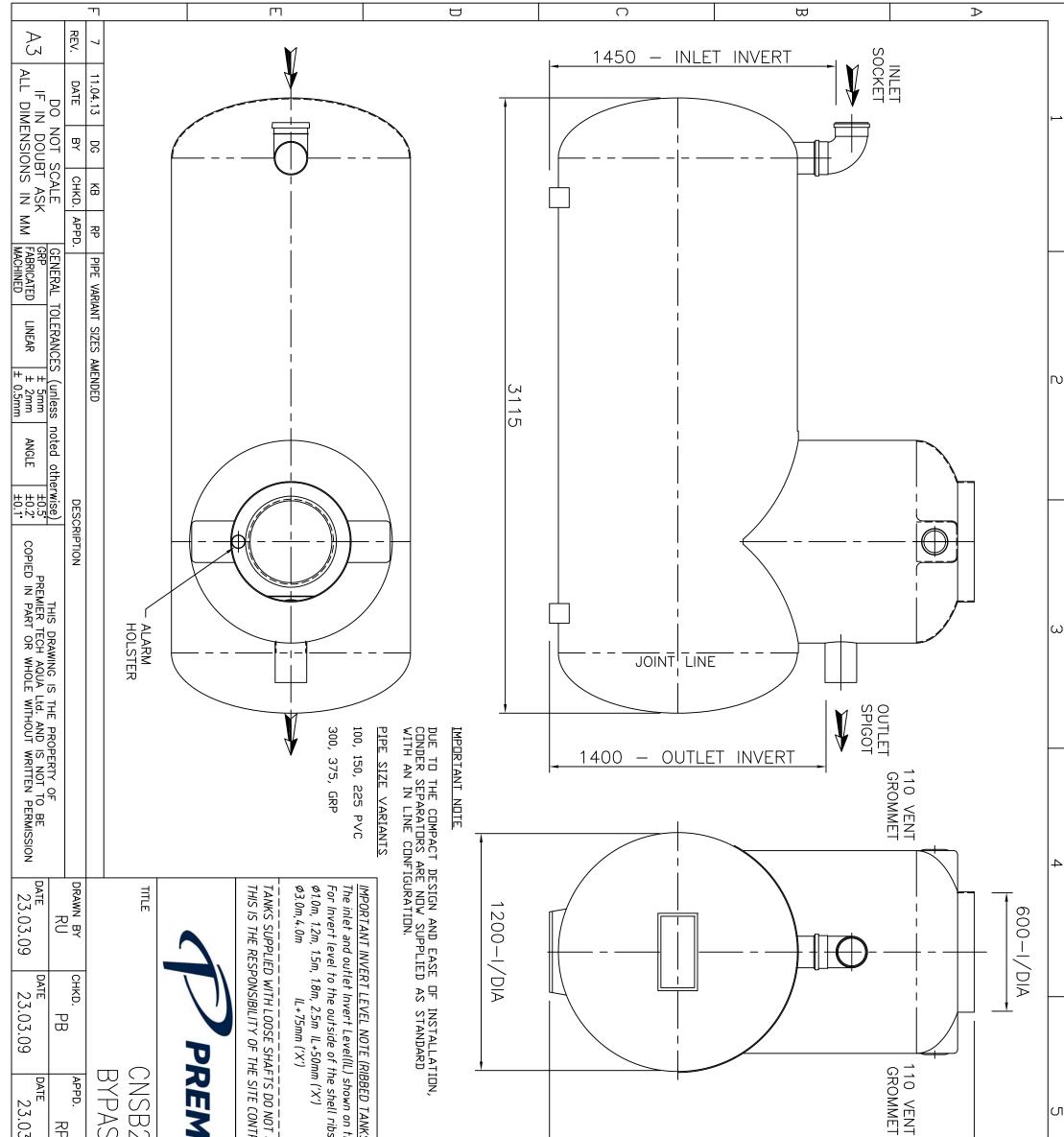
We are working on a planning application for development of a Data Centre campus at a site in Bracetown Co. Meath. I received your contact details from Paul Aspell who asked us to get in touch with you regarding Surface Water Drainage from the site. (A layout plan indicating the site location relative to local watercourses is attached for your information).

Would it be possible to meet with you at a time of your convenience next week?

Many thanks for your assistance.


Kind Regards,

Conor Doherty Senior Civil Engineer


Clifton Scannell Emerson Associates Consulting Engineers CSEA, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin T. +353 1 2885006 | F. +353 1 2833466 | Web. <u>www.csea.ie</u> | Email. <u>conor.doherty@csea.ie</u> Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix B – Petrol Interceptor Details

	1	_
	1. PRODUCT INFORMATION The Conder range of light liquid separators is produced from high grade GRP. Inlets and outlets are provided as spigots, Connections may be made by steel-banded flexible couplings, nitrile seal joints, rope-seal and mortar or any other appropriate jointing method. Ventilation specifications should be in accordance with Local Authority requirements. Vent pipework from multiple chambers must never be manifolded below ground level.	D
	 PERFORMANCE CHARACTERISTICS Separators are based on the requirements stated in Draft European Standard prEN858-1 and Environment Agency guideline PPG3, in particular:- a. The nominal size has been established from performance tests where the residual oil at the outlet is less than 5mg/l for class 1 separators and less than 100mg/l for class 2 separators. 	
	3. MAINTENANCE AND USE It is important to recognise that light liquid separators require regular maintenance. The period between maintenance operations can vary depending on the location and use of the separator, therefore routine inspections shall be undertaken at least every six months and a log maintained of inspection date, depth of oil, depth of silt and any cleaning that is undertaken. A Conder Alarm should be fitted to every separator to give automatic warning that the light liquid capacity has been reached.	С
	Access to the separator should be kept clear and not used for storage.4. PRODUCT DEVELOPMENTIn line with our policy of constant improvement and development, we reserve the right to change specification without prior notice.	\bigcirc
-	<u>PIPE SIZE VARIANT:</u> 100, 150, 225 PVC 300, 375 GRP	В
2	DG RU 20/05/2011 Approved by 20/05/2011	A
	SEPARATOR - FULL RETENTION - CNS80S CNS80S-11-SALES	
		J

this drawing is s, see the conv s, see the conv reactor. P SS SEF 3.09	2150-OVERALL INTERNAL HEIGHT	
awing is to internals of the shell unless otherwise stated. the conversion below: SUPPLIED WITH A FIXING KIT. DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' DETAIL 'Y' T SUPPLIED WITH A FIXING KIT. DRAWING KIT. DRAWING NO. SALES SALES REVISION AUSTRIANS SALES	 <u>NOTES:</u> PRODUCT INFORMATION The Conder range of light liquid separators is produced from high grade GRP. Inlets are provided as sockets and outlets as spigots. Connections may be made by steel-banded flexible couplings, nitrile seal joints, rope-seal and mortar or any other appropriate jointing method. PERFORMANCE CHARACTERISTICS Separators are based on the requirements. Vent pipework from multiple chambers must never be manifolded below ground level. PERFORMANCE CHARACTERISTICS Separators are based on the requirements stated in European Standard EN858-1 and Environment Agency guideline PPG3, in particular:- The nominal size has been established from performance tests where the residual oil at the outlet is less than 100mg/l for class 1 separators and less than 100mg/l for class 2 separators. MAINTENANCE AND USE It is important to recognise that light liquid separator, therefore routine inspections shall be undertaken at least every six months and a log maintained of inspection date, depth of oil, depth of silt and any cleaning that is undertaken. A Conder Alarm should be fitted to every separator to give automatic warning that the tight liquid capacity has been reached. Access to the separator should be kept clear and not used for storage. 4. PRODUCT DEVELOPMENT In line with our policy of constant improvement and development, we reserve the right to change specification without prior notice. 	6

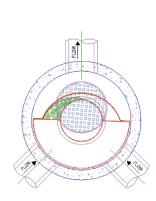
Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix C – SurfSep[™] Details

CDS Dime	nsions (mm)								
	CDS10404	CDS0604	CDS0606	CDS0804	CDS0806	CDS0808	CDS1010	CDS1012	CDS1015
А	370	370	370	370	370	370	500	500	500
В	444	815	615	810	830	810	800	800	830
С	1250	1985	1985	2080	2300	2480	2800	3000	3330
D	800	1200	200	1500	1500	1500	2000	2000	2000
E	1112	1665	1665	1966	1966	1966	2475	2475	2475
F	400	700	700	700	700	800	1000	1000	1000
G (dia)	400	600	600	800	800	800	1000	1000	1000
Н	400	400	600	400	600	800	1000	1200	1500

Selection Table — CDS Polypropylene Manhole Units

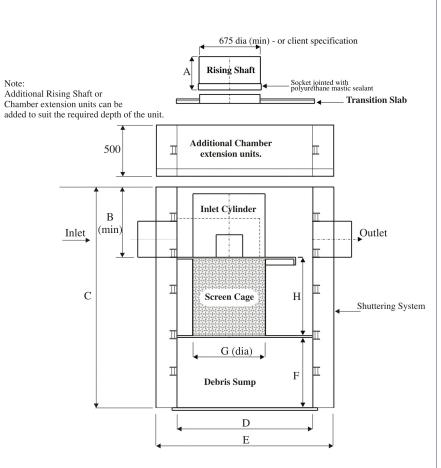
Model Reference	Hydraulic Peak Flow Rate l/s	Treatment Flow Rate l/s	Drainage Area — Impermeable m²	Chamber Diameter (mm)	Internal Pipe Diameter (mm)
CDS 0404	30	12.5	2,000	900	150/225
CDS 0604	70	23	5,000	1200	225
CDS 0606/01	140	38	10,000	1200	225-375
CDS 0606/02	200	38	15,000	1200	225-375
CDS 0806	350	49	25,000	1500	450
CDS 0808	400	72	30,000	1500	450
CDS 1010	480	116	35,000	2000	450
CDS 1012	550	152	40,000	2000	450/750
CDS 1015	700	211	50,000	2000	450/750
CDS 0804	275	31	20,000	1500	300


Proposed Peak Fow Rate for each model calculated using Rational Lloyd Davis with a rainfall intensity of 50mm/hr. For greater flows — special design/ construction required.

In-Line CDS

For small catchment, these units are used within the drainage system in-line and are supplied as BBA Approved* complete manhole polypropylene units from the selection table above.

Off-Line CDS


Larger catchment areas and retrofit projects designed with larger surface runoff conveyance capacity can receive treatment using a CDS unit placed adjacent to the storm pipeline. Water is channeled to these offline CDS configurations using a diversion structure. The diversion structure and

its weir send the water quality flow to the offline CDS unit and also ensure larger flow events from less frequent storm events properly bypass the offline unit without cause flooding upstream of the unit.

Model Designation

A four digit number representing the screen diameter and screen height then follows to give the standard model designation for a CDS screen for installation into standard commercially available pre-fabricated manhole chambers. Example: CDS 0806 designates a separation screen dia. 0.8 m and screen height of 0.6m.

800.338.1122

contechstormwater.com

Support

• Drawings and specifications are available at contechstormwater.com

• Site-specific design support is available from our engineers.

©2008 CONTECH Stormwater Solutions

Nothing in this catalog should be construed as an expressed warranty or an implied warranty of merchantability or fitness for any particular purpose. See the CONTECH standard quotation or acknowledgement for applicable warranties and other terms and conditions of sale.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266 related foreign patents or other patents pending. CDS is a trademark of CONTECH Construction Products Inc.

Surface Water 08/08

CANTECH

Surface Water Treatment SUDs Protector

The CDS Non Blocking screening technology is an innovative method of liquid/solid separation for stormwater runoff.

The technology accomplishes high efficiency separation of settleable particulate matter and capture of floatable material.

A unique feature is it's compact design. It is available as packaged systems, which can either be installed inside pre-cast concrete chamber rings, or complete BBA Approved Polyethylene manholes.

Applications

- Commercial/residential developments
- Municipal/roadway development
- Industrial development
- Pre-treatment for wetlands, ponds and swales
- Rainwater harvesting
- Pre-treatment for oil separators
- Pre-treatment for media and ground in-filtration systems
- Pre-treatment for underground detention/retention system

* BBA - this certificate relates to Pipex universal manholes and access chambers which are manufactures from welded polypropylene (PP)

Primary Features

- Effective Targets 80% solids removal
- Non-Blocking Unique design takes advantage of indirect screening and properly proportioned hydraulic forces that virtually makes the unit unblockable.
- Non-Mechanical The unit has no moving parts and requires no mechanical devices to support the solid separation function.
- Low Maintenane Costs The system has no moving parts and is fabricated of durable materials.
- Compact & Flexible Design and size flexibility enables the use of various configurations.
- High-flow Effectiveness The technology remains highly effective across a broad spectrum of flow ranges.
- Assured Pollutant Capture All materials captured are retained during high flow conditions.
- Safe & Easy Pollutant Removal Extraction methods allow safe and easy removal of pollutants without manual handling.

Sustainable Urban Drainage System (SUDS)

Developments that achieve SUDS integrate techniques for managing the surface water runoff so that it more closely replicates the natural pre-development conditions of the catchments. Additionally, best practices to control pollution close to their source of generation and achieve surface water quality improvements as well as provide amenity benefits are also required in achieving sustainable urban drainage systems.

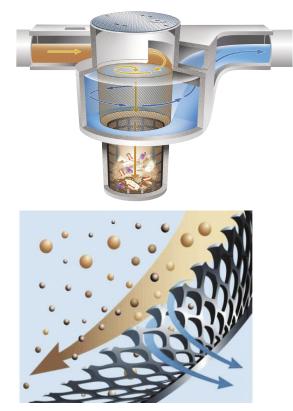
Presently in the UK, Scotland and Ireland, SUDS is a planning requirement to be incorporated into the surface water drainage whenever possible and in Scotland, this is a legal requirement.

Sizing Unit Selection

In stormwater applications, an analysis of the catchment in terms of its size, topography and land use will provide information for determining flow to be expected for various return periods.

The CDS is designed to treat flow that mobilizes the gross pollutants within the catchment. Since there are variations in catchment response due to region, land use and topography, it is recommended that the selection of flow to be treated will be for return periods of between 3 months and 1 year.

Balancing the cost to the operator against the benefits to the environment


Field evaluations to determine pollutant mobilization have found that the vast majority of pollutants are mobilized in flows that are well below the design capacity for the conveyance facility – typically known as the 'first flush'.

Therefore it is typical not to design the CDS models to process the conveyance system's maximum flow in order to achieve a very high level of pollutant removal.

The added value benefit to the operator is reduced civil costs without compromising the benefits to the environment.

How it works

Water and pollutants enter the system and are introduced tangentially inside the separation chamber forming a circular flow motion. Floatables and suspended solids are diverted to the slow moving centre of the flow. Negatively buoyant solids settle out to an undisturbed sump chamber below, while the water passes countercurrently through the separation screen. Floatables remain at the water surface and retained within the screen.

Surface Water Treatment Systems

Hydraulic Design

Every application requires a detailed hydraulic analysis to ensure the final installation will optimize solids separation without blocking the screen.

After the design flow has been determined, the appropriate standard model can be selected. A selection table is provided on page 4.

The Ultimate SUDs Protector

There are four principal areas of proprietary SUDs technology:

- Infiltration
- Flow control
- Storage/attenuation
- Treatment

When installed upstream of any proprietary SUDs technology, the CDS protects the receiving SUDs from fine solids and debris that would otherwise accumulate over time rendering the SUDs non-operational, as the worse case.

To remove fine solids and debris that would otherwise accumulate over time reducing the down stream effectiveness of downstream SUDs assets, CDS units have been successfully installed in front of:

- Soakaways
- Infiltration Trenches
- Filters
- Wetlands
- Ponds and Water Features
- Detention and Retention Systems
- Oil Separators
- Create storage systems

Infiltration

CDS units have been successfully installed in front of ground infiltration systems to remove grit. Fine solids and debris which accumulates in and around the SUDs causing visual degradation in the short term and accumulation of silt and grits leading to reduced volume in the long term.

Studies have also shown that heavy metals & PAH's accumulate within the SUDs over time before being released back to the environment resulting in elevated concentrations.

Operation & Performance

Performance Criteria

Note: Screen apertures of 4.8 mm and 2.4 mm are available.

Typical Aperture Performance

- Shall remove all solids with a single dimension greater than aperture size and positively contain those solids until the unit is cleaned.
- Shall remove and positively contain 100 percent of all neutrally buoyant particles with a single dimension greater than aperture size for all flow conditions to design capacity.
- Shall remove and positively contain 100 percent of all floating trash and debris with a single dimension greater than aperture size for all flow conditions to the design capacity
- Shall remove a minimum of 50 percent of oil and grease (as defined as the floating portion of total hexane extractable materials) for all flow conditions to the design capacity, without the addition of absorbents.
- Shall provide the following minimum particle removal efficiencies (based on a specific gravity of 2.65):

Maintenance

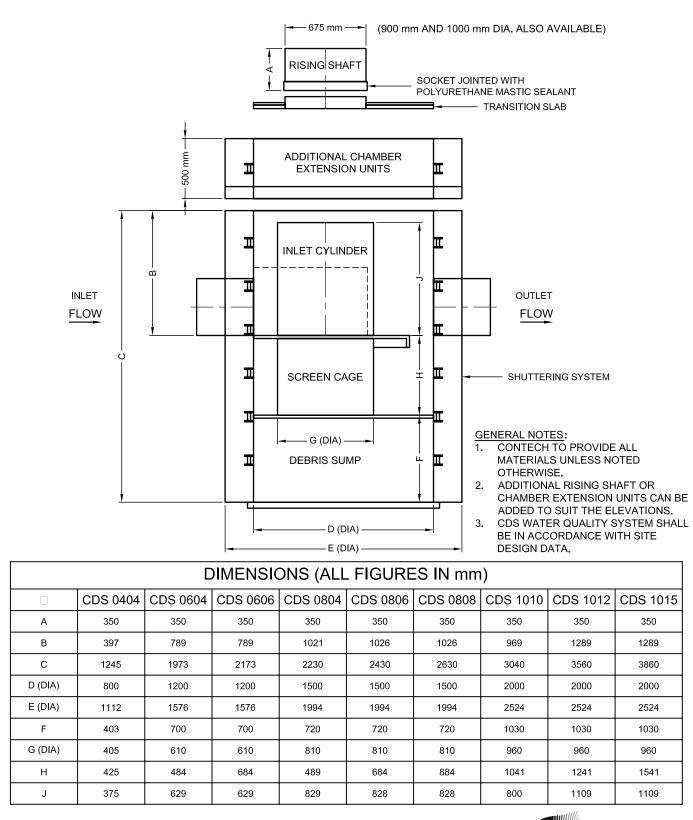
CDS maintenance can be site and drainage area specific. The installation should be inspected periodically to assure its condition to handle anticipated runoff. If pollutant loadings are known, then a preventive maintenance schedule can be developed based on runoff volumes processed.

New Installations

Check the condition of the installation after the first few events. This includes a visual inspection to ascertain that the unit is operating correctly and measuring the amount of deposition that has occurred in the unit. This may be achieved using a 'Dip Stick'.

Ongoing Operation

For the first 12 months the sediment sump capacity should be inspected quarterly and recorded. When the inspection indicates that the sediment is approaching the top of the sump (base of screen) a cleanout should be undertaken.


Cleaning Methods

- Eduction (Suction)
- Basket Removal
- Mechanical Grab

Maintenance Cycle

Minimum once per year. Depending on the pollutant load it may be necessary to maintain the installation more frequently.

The operator shall be able to devise the most efficient maintenance schedule for any particular installation over a 12 month operating cycle.

PROPRIETARY INFORMATION -NOT TO BE USED FOR CONSTRUCTION PURPOSES

TYPICAL DETAIL

CDS[®] SURFSEP SYSTEM PLASTIC CHAMBER CONFIGURATION

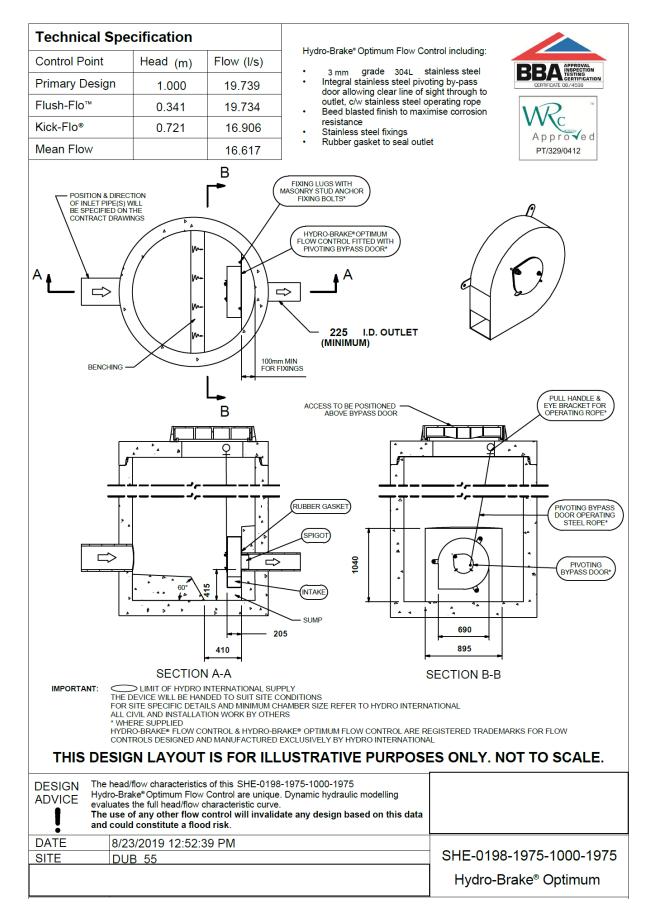
800-526-3999 303-796-2233 303-796-2239 FAX

10/27/2011 2:08 PM

AD. CONTECH-CPI COM/ROOT/STOR/WWATER/COMMOPS/22 CDS/100 SURFSEP/DRAFT/NG/CONTECH CDS-PP STANDARD DETAIL DWG

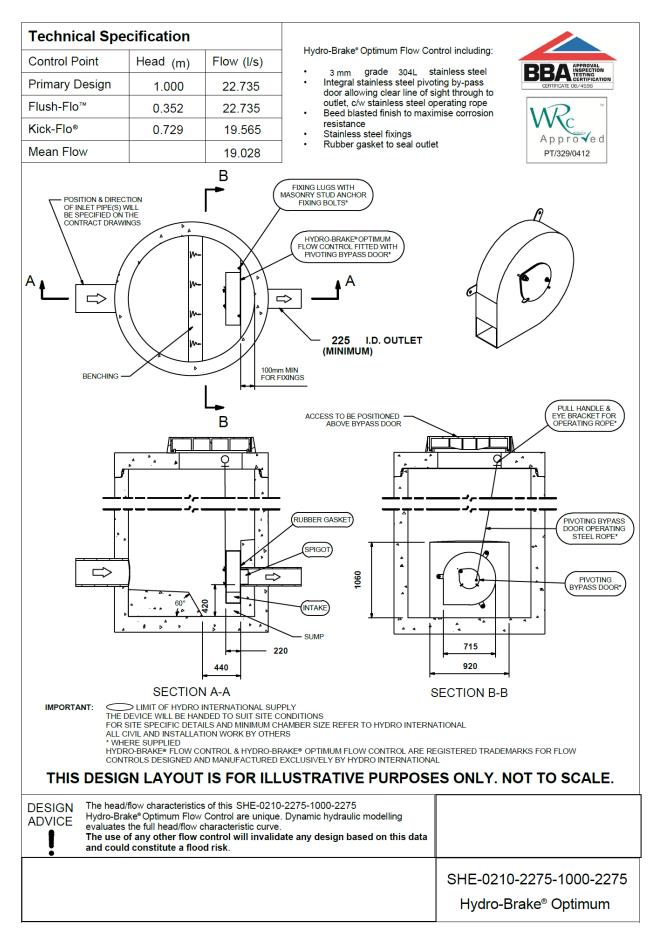
DATE:10/27/11 SCALE: NONE

FILE NAME: SURFSEP TYP. DET. W/ TABLE DRAWN: SCF

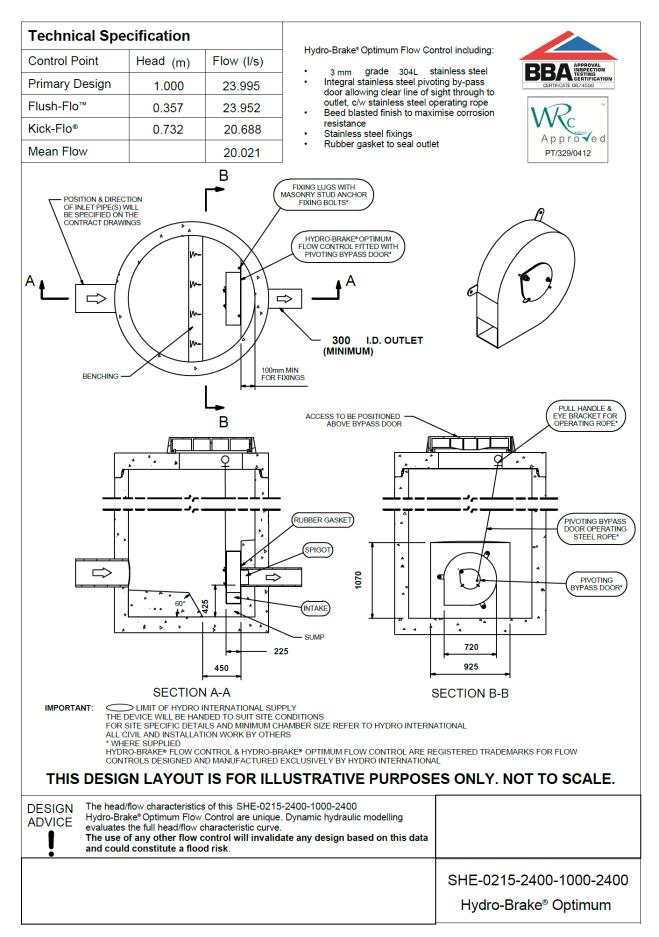

CHECKED: JAG

Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix D – Hydrobrake[™] Details


Technical Sp	Technical Specification											
Control Point	Head (m)	Flow (I/s)										
Primary Design	1.000	19.739										
Flush-Flo™	0.341	19.734										
Kick-Flo®	0.721	16.906										
Mean Flow		16.617										

Mean F	low		16.617		CERTIFICATE No 08/	4596	_ P	1/329/0412
							Head (m)	Flow (I/s)
							0.000	0.000
							0.034	0.936
							0.069	3.498
							0.103	7.242
							0.138	11.598
							0.172	15.788
	1.2					1	0.207	18.931
							0.241	19.336
							0.276	19.582
	1-						0.310	19.704
							0.345	19.734
	0.8						0.379	19.697
	0.8						0.414	19.614
							0.448	19.503
Head (m)	0.6						0.483	19.371
Hear	0.0						0.517	19.221
							0.552	19.045
	0.4 -						0.586	18.826
							0.621	18.538
							0.655	18.145
	0.2						0.690	17.605
							0.724	16.948
							0.759	17.313
	0						0.793	17.682
	0	5	10		15 20	D	0.828	18.042
			Flow (I/s)				0.862	18.395
							0.897	18.741
							0.931	19.080
							0.966	19.412
							1.000	19.739
	Hydro-Brak evaluates the The use of	ow characteristics o e Optimum® Flow (ne full head/flow cha any other flow con constitute a flood	Control are unique. aracteristic curve. ntrol will invalidat	Dynamic		ıta		
ATE		3/2019 12:52:39						
ITE	DU	B 55					SHE-0198-19	975-1000-1975
							Hydro Brok	e Optimum®



lechi	nical Sp	ecificatio	on				
Control	Point	Head (m)	Flow (I/s)				
Primary	Design	1.000	22.735				
lush-F	lo™	0.352	22.735				
Kick-Flo)®	0.729	19.565	B	BA APPROVAL INSPECTION TESTING CERTIFICATIO	IN A P	PROVED
Vlean F	low		19.028	C	ertificate no 08/4596	P	T/329/0412
						Head (m)	Flow (l/s)
						0.000	0.000
						0.034	0.970
						0.069	3.642
						0.103	7.596
						0.138	12.301
	1.2					0.172	17.076
						0.207	21.036
						0.241	22.187
	1					0.276	22.501
						0.310	22.672
						0.345	22.733
	0.8 -					0.379	22.712
						0.414	22.633
Ê						0.448	22.515
Head (m)	0.6 -					0.483	22.370
не						0.517	22.202
						0.552	22.006
	0.4 -					0.586	21.767
						0.621	21.459
						0.655	21.048
	0.2 -					0.690	20.488
						0.724	19.728
						0.759	19.936
	0-		10			0.793	20.361
	U	D	10 Flow (l	15 s)	20	0.828	20.777
			1 100 (1	")		0.862	21.184
						0.897	21.583
						0.931	21.974
						0.966	22.358
						1.000	22.735
	The head/flov	v characteristics	of this SHE-021	0-2275-1000-22	75		
	Hydro-Brake	Optimum® Flow	Control are uniqu aracteristic curve	e. Dynamic hydra			
!	The use of a		ntrol will invalid		based on this data		
						SHF-0210-22	275-1000-227
						∣ Hydro-Brak	e Optimum®

ſ

ntrol Point	Head (m)	Flow (I/s)					
mary Design	1.000	23.995					N RZ
sh-Flo™	0.357	23.952	BE	APPR	OVAL		
k-Flo®	0.732	20.688	BE		OVAL ECTION ING IFICATION		PROV
an Flow		20.021	CERT	IFICATE No 08/4	1596	Р	T/329/0412
		1]					
						Head (m)	Flow (l/s)
						0.000	0.000
						0.034	0.983
						0.069	3.698
						0.103	7.732
						0.138	12.569
1.2						0.172	17.562
						0.207	21.776
						0.241	23.323
1-						0.276	23.671
						0.310	23.867
						0.345	23.947
0.8						0.379	23.938
						0.414	23.866
0.6-						0.448	23.750
0.6						0.483	23.604
						0.517	23.432
				V		0.552	23.232
0.4					+	0.586	22.988
						0.621	22.677
						0.655	22.261
0.2						0.690	21.698
				I		0.724	20.934
				I		0.759	21.039
0	5	10	20)	25	0.793	21.488
		Flow (I/s)				0.828	21.927
						0.862	22.357
						0.897	22.779
						0.931	23.192
						0.966	23.597
						1.000	23.995
Hydro Broke		of this SHE-0215- Control are unique.		modelling			
evaluates th The use of	e full head/flow ch any other flow co	aracteristic curve. ontrol will invalidat	-	-	a		
and could c	constitute a flood	risk.					
					5	SHE-0215-24	400-1000-3
						Hydro-Brak	o Ontimu

Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix E – Site Investigation Information

TRIAL PIT RECORD

REPORT NUMBER

21674

CON	TRACT	EngineNode Data Centre	1					TRIAL PI	T NO.	TP04 Shee	4 t 1 of 1	
LOG	GED BY	SH		CO-ORDINATES 702,621.44 E 743,092.34 N GROUND LEVEL (m) 70.32					ARTED			
CLIEI Engi	NT NEER	EngineNode Clifton Scannell Emerson Associates							TION	JCB		
								S	Samples	6	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO Brown S	IL SILT/CLAY with roots		× ×	0.10	70.22						
	Grey bro Sand is subangu	own silty sandy GRAVEL with low co fine to coarse. Gravel is fine to coar ular to rounded. Cobbles are subrou	obble content. se and nded to		0.60	69.72		117170	В	0.50-0.50		
1.0	rounded	Ι.						117171	В	1.00-1.00		
2.0	Stiff blac content. and sub	ck slightly sandy gravelly CLAY with Sand is fine to medium. Gravel is fi angular to rounded.	low cobble ne to medium		1.80	68.52		117172	В	2.00-2.00		
3.0	End of 1	Frial Pit at 3.00m			3.00	67.32		117173	В	3.00-3.00		
4.0												
		Conditions										<u> </u>
Stabi Stabl	ility le											
Gene	eral Rema	rks										

TRIAL PIT RECORD

REPORT NUMBER

21674

CON	TRACT	EngineNode Data Centre						TRIAL PI	T NO.	TP0 Shee	7 et 1 of 1		
_OG(GED BY	BY FC CO-ORDINATES 703,032.89 E 742,999.34 N DATE STARTED 01/04 GROUND LEVEL (m) 68.45 01/04 01/04 01/04											
CLIEI	NT NEER	EngineNode Clifton Scannell Emerson Associates		GROUND LEVEL (m) 68.45					TION	JCB			
								5	Samples		ba)	meter	
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer	
0.0	TOPSO				0.10	68.35							
-	Firm bro	wn sandy SILT/CLAY with occasiona wn/grey sandy SILT/CLAY with som nal cobbles	-		0.40	68.05		AA117189	В	0.50			
1.0						00.07		AA117190	В	1.00			
2.0	Stiff to v with son	ery stiff dark grey and black sandy g ne cobbles	ravelly CLAY	-\$\Phi \Phi \Phi \Phi \Phi \Phi \Phi \Phi	1.80	66.65		AA117191	В	2.00			
3.0	End of T	rial Pit at 3.00m			3.00	65.45		AA117192	В	3.00			
4.0													
Dit wa	as dry	Conditions											
iene	ral Rema	rks											

TRIAL PIT RECORD

REPORT NUMBER

21674

197												
TRACT	EngineNode Data Centre							T NO.				
GED BY	SH		743,114.10 N						01/04	/2019		
NT NEER	EngineNode Clifton Scannell Emerson Associa								JCB			
							ę	Samples	6	a)	neter	
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetrometer	
TOPSO	IL		<u>x11</u> , <u>x11</u> , <u>11</u> , <u>x11</u> , <u>x1</u> ,									
medium	. Gravel is fine to coarse and ang	d is fine to ular to	×°××××××××××××××××××××××××××××××××××××	0.40	68.42		117166	В	0.50-0.50			
Firm gre medium subroun	ey sandy very gravelly CLAY. Sand . Gravel is fine to coarse and suba ded.	t is fine to angular to	× 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.90	67.92		117167	В	1.00-1.00			
cobble o	content. Sand is fine to medium. G and subangular to rounded. Cobbl	Gravel is fine to		1.80	67.02		117168	В	2.00-2.00			
subroun	ded to rounded.					1						
End of 1	Frial Pit at 3.00m			3.00	65.82	(Seepage)	117169	В	3.00-3.00			
lity e												
	rks											
	TOPSO Soft ligh medium subangu Firm gre medium subroun Stiff to v cobble c coarse a subroun End of T	TRACT EngineNode Data Centre GED BY SH NT EngineNode NEER Clifton Scannell Emerson Associal Geotechnical Description TOPSOIL Soft light brown gravelly sandy SILT. Sand medium. Gravel is fine to coarse and angi subangular. Firm grey sandy very gravelly CLAY. Sand medium. Gravel is fine to coarse and suba subrounded. Stiff to very stiff black sandy very gravelly cobble content. Sand is fine to medium. G coarse and subangular to rounded. Cobbl subrounded to rounded. End of Trial Pit at 3.00m Indwater Conditions age @ 2.8m	TRACT EngineNode Data Centre GED BY SH NT EngineNode NEER Clifton Scannell Emerson Associates Geotechnical Description Geotechnical Description TOPSOIL TOPSOIL Soft light brown gravelly sandy SILT. Sand is fine to medium. Gravel is fine to coarse and angular to subangular. Firm grey sandy very gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse and subangular to subrounded. Stiff to very stiff black sandy very gravelly CLAY with low cobble content. Sand is fine to medium. Gravel is fine to coarse and subangular to rounded. Cobbles are subrounded to rounded. End of Trial Pit at 3.00m Indwater Conditions age @ 2.8m	TRACT EngineNode Data Centre SED BY SH CO-ORDINATES NT EngineNode GROUND LEVEL (m) NT EngineNode Geotechnical Description Geotechnical Description Geotechnical Description Geotechnical Description TOPSOIL Geotechnical Description Geotechnical Description Soft light brown gravelly sandy SILT. Sand is fine to medium. Gravel is fine to coarse and angular to subangular. Soft light brown gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse and subangular to subrounded. Firm grey sandy very gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse and subangular to couble content. Sand is fine to medium. Gravel is fine to medium. Gravel is fine to rounded. Geotechnical Description Stiff to very stiff black sandy very gravelly CLAY with low cobble content. Sand is fine to medium. Gravel is fine to coarse and subangular to rounded. Geotechnical Description End of Trial Pit at 3.00m Geotechnical Cobbles are subrounded to rounded. Geotechnical Description Intwater Conditions age @ 2.8m Integrational structure structur	TRACT EngineNode Data Centre GED BY SH CO-ORDINATES 703.20 743,1" NT EngineNode Clifton Scannell Emerson Associates GROUND LEVEL (m) 68.82 Geotechnical Description upged Geotechnical Descripti	TRACT EngineNode Data Centre SEE BY SH CO-ORDINATES (ROUND LEVEL (m)) 703,205,08 E 68.82 NT EngineNode End of Scannell Emerson Associates GROUND LEVEL (m) 68.82 Geotechnical Description Image: Color Scannell Emerson Associates TOPSOIL Image: Color Scannell Emerson Associates Soft light brown gravelly sandy SILT. Sand is fine to medium. Gravel is fine to coarse and angular to subangular. Image: Color Scannell Emerson Associates Image: Color Scannell Emerson Associates Image: Color Scannell Emerson Associates Firm grey sandy very gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse and subangular to cobble content. Sand is fine to medium. Gravel is fine to coarse and subangular to rounded. Cobbles are subrounded to rounded. Image: Color Scannel Emerson Associates Image: Color Scannel Emerson Associates Image: Color Scannel Emerson Associates End of Trial Pit at 3.00m Image: Color Scannel Emerson Associates Image: Color Scannel Emerson Associates	TRACT EngineNode Data Centre SetD BY SH CO-ORDINATES 703,205.08 E NT EngineNode NT EngineNode Geotechnical Description Geotechnical Description g <thg< th=""> g <thg< th=""></thg<></thg<>	IRACT EngineNode Data Centre IRAL PI SED BY SH CO-ORDINATES 703.205.08 E TA1.11.10 N NT EngineNode B8.82 DATE SI NT EngineNode B8.82 EXCAVA NEE Clitton Scannell Emerson Associates Geolechnical Description B8.82 EXCAVA Geolechnical Description B9.92 B1.02 B1.02 B1.02 B1.02 TOPSOIL Soft light brown gravelly sandy SILT. Sand is fine to medium. Gravel is fine to ccarse and angular to subrounded. 0.40 68.42 117.166 Soft light brown gravelly sandy Very gravelly CLAY. Sand is fine to medium. Gravel is fine to ccarse and subangular to subrounded. Stift to very stift black sandy very gravelly CLAY with low cobles are subrounded. B1.80 67.02 117.168 Stift to very stift black sandy very gravelly CLAY with low cobles are subrounded. B1.80 67.02 117.168 Subrounded to rounded. End of Trial Pit at 3.00m B5.82 Example 117.168 Stift to very stift black sandy very gravelly CLAY with low cobles are subrounded to rounded. Stift to very stift black sandy very gravelly CLAY with low cobles are subrounded to rounded. Stift to very stift black sandy very gravelly CLAY with low cobles are subrounded to rounded. </td <td>Image: Cartering and the second se</td> <td>TRACT EngineNode Data Centre TRACT EngineNode Data Centre TRACT EngineNode Data Centre TRACT EngineNode Data Centre TOPSOL Geotechnical Description Bag Geotechnical Description Bag Out Colspan="2">Output to the provide the provide</td> <td>TRACT EngineNode Data Centre TRACT EngineNode Data Centre TRACT EngineNode Data Centre TOP SOL TOP SOL TOP SOL TOP SOL Samples TOP SOL TOP SOL Samples TOP SOL Samples TOP SOL Soft light brown grawelly standy SLT. Sand is fine to carse and angular to subangular. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. <th colspa<="" td=""></th></td>	Image: Cartering and the second se	TRACT EngineNode Data Centre TRACT EngineNode Data Centre TRACT EngineNode Data Centre TRACT EngineNode Data Centre TOPSOL Geotechnical Description Bag Geotechnical Description Bag Out Colspan="2">Output to the provide	TRACT EngineNode Data Centre TRACT EngineNode Data Centre TRACT EngineNode Data Centre TOP SOL TOP SOL TOP SOL TOP SOL Samples TOP SOL TOP SOL Samples TOP SOL Samples TOP SOL Soft light brown grawelly standy SLT. Sand is fine to carse and angular to subangular. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. Soft light brown grawelly CLAY Sand is fine to carse and subangular to rounded. <th colspa<="" td=""></th>	

Appendix 4

Infiltration Test Records

Soaka	way D	esign f-va	lue fro	m field te	ests	(F2C) IGSL
	-	e Data Centre			Contract No.:	21675
	SA01					
Client:	Clifton Sca	nnell Emerson Associate	es			
Date:	#########					
Summary c	of ground c	onditions				
	to	Descripti	on			Ground water
0.00		TOPSOIL				
0.40		Brown silty very sandy				Not Encountered
1.60	2.00	Brown silty very sandy	GRAVEL wit	h low cobble con	ntent.	
Notes:						
Field Data			Field Te	est		
		1			0.65	_
Depth to	Elapsed			of Pit (D)	2.00	m
Water	Time			of Pit (B)	0.30	m
(m)	(min)		Length	of Pit (L)	1.00	m
1 1 0	0.00	4	ا- اماطاما	opth to Mater	1 10	٦m
1.10 1.10	0.00	4		epth to Water = epth to water =	1.10	m m
1.10	2.00			l time (mins)=	60.00	
1.10	3.00	-	сарьес		00.00	
1.10	4.00	1	Top of	permeable soil	0.00	m
1.10	5.00			permeable soil	2.00	m
1.10	6.00	1				<u> </u>
1.10	7.00	1				
1.10	8.00]				
1.10	9.00]				
1.10	10.00		Base ar	ea=	0.3	m2
1.10	12.00	*Av. side area of perme				m2
1.10	14.00		Total E	xposed area =	2.64	m2
1.10	16.00					
1.10	18.00	Infiltration rate (f)	\/alumaa	of water wood /w		
1.10 1.10	20.00 30.00	Infiltration rate (f) =	volume	of water used/u	init exposed area	a / unit time
		· ·	0			0
1.10	40.00	f=	0 m/mir	n ór		0 m/sec
1.10	60.00					
		Depth of wat	er vs Élapse	ed Time (mins)		
	70.00					
_	60.00				•	
nins)	50.00					—
ь те(п	40.00				•	—
a p	30.00				•	
ь – п Elapsed Time(mins)	20.00				\$	
	10.00				¥	
	0.00	0.20 0.4	0 0.0	60 0.80	1.00	1.20
	0.00		Depth to W		1.00	1.20
				alci (III)		

Soaka	way D	esign	f -valu	e from	field te	sts	(F2C) IGSL
		le Data Centre				Contract No.:	21675
Test No.:							
		annell Emerson A	ssociates				
Date:	#########						
Summary c							
	to		escription				Ground water
0.00		TOPSOIL					_
0.40		Brown silty very					Not Encountered
1.60	2.00	Firm to stiff gre	y slightly g	ravelly CLAT	•		-
Notes:	<u> </u>						
<u>Field Data</u>				<u>Field Test</u>			
Depth to	Elapsed	1		Depth of Pit	(D)	2.00	m
Water	Time			Width of Pit		0.30	m
(m)	(min)			Length of P	1 A A	1.00	m
]		-			
1.70	0.00	1		Initial depth		1.70	m
1.70	1.00	1		Final depth		1.96	m
1.72	2.00	4		Elapsed time	e (mins)=	20.00	
1.75	3.00	4					-
1.77	4.00	4		Top of perm		0.00	m
1.78	5.00	4		Base of peri	neable soil	2.00	m
1.79	6.00	-					
1.80	7.00	-					
1.83 1.84	8.00 9.00	4					
1.85	10.00	-		Base area=		0.3	m2
1.87	15.00	*Av. side area c	of nermeabl		er test nerio		m2
1.96	20.00		, pointouoi	Total Expos		0.742	m2
		1					
		Infiltration rate	(f) =	Volume of v	vater used/ur	nit exposed area	a / unit time
		f=	0.00526	m/min	ór	8.76E-0	5 m/sec
		Depth	n of water v	vs Elapsed Ti	me (mins)		
	25.00						
iins)	20.00						
» – п Elapsed Time(mins)	15.00					•	
a bsed	10.00			*	•		
Elal	5.00		• • •	•			
	0.00	1.70	1.75	1.80 1.	85 1.90) 1.95	2.00
			Dep	oth to Water	(m)		

Soaka	way D	esign	f -va	lue from	field te	sts	(F2C) IGSL
		le Data Centre				Contract No.:	21675
Client:		annell Emerson	Associate	S			
Date:	#########						
Summary o	1	onditions	B				
	to	TOPSOIL	Descripti	on			Ground water
0.00 0.50		Firm grey / bla	nek candy	vory gravelly (_
1.50		Firm to stiff b				ntent	Seepage @ 2.0m
			aon grare		011 000010 001		
Notes:							
<u>Field Data</u>				<u>Field Test</u>			
Depth to	Elapsed	1		Depth of P	it (D)	2.00	m
Water	Time			Width of Pi		0.30	m
(m)	(min)			Length of	Pit (L)	1.00	m
1.07	0.00]			n to Water =	1.07	m
1.07	1.00	1			to water =	1.07	m
1.07	2.00	4		Elapsed tin	ne (mins)=	60.00	
1.07	3.00	4		Tonof	mooble e="	r	
1.07 1.07	4.00	-		Top of per	meable soil		m m
1.07	6.00	-		base of pe			
1.07	7.00	-					
1.07	8.00	1					
1.07	9.00	1					
1.07	10.00			Base area=		0.3	m2
1.07	15.00	*Av. side area	of perme	able stratum o	•		m2
1.07	20.00	4		Total Expo	sed area =	2.718	m2
1.07	30.00 40.00	-					
1.07 1.07	50.00	Infiltration rate		Volume of	water used/u	nit exposed are	a / unit time
1.07	60.00		- (I) –	volume of		int exposed are	
	00.00	f=		0 m/min	or		0 m/sec
				0 11/11	01		0 11/ 300
∞ – п Elapsed Time(mins)	70.00 60.00 50.00 40.00	Dep	th of wat	er vs Elapsed T	ïme (mins)	•	
E H A P	30.00 -					•	
apsec	20.00					•	
	10.00					• •	
	0.00	T	1		T		
	0.00	0.20	0.40		0.80	1.00	1.20
			I	Depth to Wate	(11)		

Soaka	way D	esign	f -valu	e from	field te	sts	(F2C) IGSL
		e Data Centre				Contract No.:	21675
	SA04						
Client: Date:	Clifton Sca	nnell Emerson A	ssociates				
Summary o							
	to		Description				Ground water
0.00		TOPSOIL					
0.40		Firm grey / blad					Seepage @ 2.0m
1.50	2.00	Firm to stiff bla	ck gravelly	CLAY with lo	ow cobble con	tent.	
Notes:							
<u>Field Data</u>				<u>Field Test</u>			
Depth to	Elapsed	1		Depth of Pi	t (D)	2.00	m
Water	Time			Width of Pi		0.30	m
(m)	(min)			Length of F	Pit (L)	1.00	m
1.00	0.00	4				1.00	
1.30 1.30	0.00	4			to Water =	1.30 1.30	m
1.30	2.00	-		Final depth Elapsed tim		60.00	m
1.30	3.00	-		парзей ин	e (mms)-	00.00	
1.30	4.00	-		Top of perr	neable soil		m
1.30	5.00			Base of per			m
1.30	6.00						
1.30	7.00	-					
1.30	8.00 9.00	-					
1.30 1.30	10.00	-		Base area=		0.3	m2
1.30	15.00	*Av. side area o	of permeab		/er test period		m2
1.30	20.00			Total Expos		2.12	m2
1.30	30.00]					
1.30	40.00						
1.30	50.00	Infiltration rate	(f) =	Volume of v	water used/ur	nit exposed are	a / unit time
1.30	60.00		0		<i>.</i>		0
		f=	U) m/min	ór		0 m/sec
	70.00	Dept	h of water	vs Élapsed T	ime (mins)		
mins)	50.00					•	
ت ا ime(ا	40.00					•	
	30.00					•	
Elap:	20.00					• •	
	0.00						
	0.00	0.20	0.40 Dep	0.60 0 oth to Water	.80 1.00 (m)) 1.20	1.40

Appendix F – Surface Water Drainage Calculations

700fc				ociates						Pag	re 1
beerort l	Lodge Ca	astled	awson	Eng	ginenode (Clonee	5				
Blackrock	ζ.			Sur	Surface Watre Network 1						
County Du	ıblin									N A	
Date 05/0	9/2019	14:02		Des	signed by	Zvoni	mir S	Salk	ic		
File Engi	.neNode 1	Networ	k 1.MD	X Che	Checked by Conor Doherty						
Micro Dra					work 2017	7.1.2					
	STOP	RM SEW	ER DESI	IGN by t	the Modif:	ied Ra	ationa	al M	ethod	<u>1</u>	
			Des	<u>ign Cri</u>	teria for	Stor	<u>m</u>				
		Pij	pe Sizes	STANDAR	D Manhole S	Sizes S	STANDAI	RD			
		FS	SR Rainf	all Model	l - Scotlan	d and	Irelan	d			
	Ret	urn Per	riod (yea		100		- /	~ 1 .		PIMP (,
				(mm) 17.8 io R 0.3						ange (⁹	k) n) 0.200
	Maximu	um Rainf	fall (mm,	/hr)	50				-	· ·	n) 1.50
Maximum T	ime of Co	ncentra	ation (m	ins)	30 Min Des	ign De	pth fo	r Op	timisa	ition (r	n) 0.75
					000 Min						
	Volume	etric Ru	noff Coe	eff. 0.7	/50 Mi	n Slop	e for	Optin	misati	on (1:2	K) 50
			De	signed wi	ith Level S	offits					
			<u>Time</u>	Area D	iagram fo	o <u>r Sto</u>	rm				
		Time (mins)		Time Are nins) (h			Time (mins)				
		() - 4	0.059	4-8 2 4							
		0 1	0.000	- 0 2.0	524 8-12	3.686	12-10	b 0.6	519		
		0 1	I		I	1		5 0.6	519		
		0 1	I		524 8-12 ributing (P	1		5 0.6	519		
		0 1	Total A	Area Cont	I	na) = 6	5.888	5 0.6	519		
			Total A Total	Area Cont . Pipe Vo	ributing (P	na) = 6 = 450.2	5.888 281	. 0.6	519		
			Total <i>F</i> Total <u>Networ</u>	Area Cont Pipe Vo ck Desig	' ributing (h lume (m³) =	ha) = 6 = 450.2 	5.888 281 torm				
PN Le	angth Fal		Total A Total <u>Netwo</u> « - Ir	Area Cont - Pipe Vo 	ributing () lume (m³) = gn Table : pipe capaci	na) = 6 = 450.2 <u>for St</u> ity < f	5.888 281 <u>torm</u> flow			07 T UD	a Auto
	ength Fal (m) (m)	l Slope	Total A Total <u>Netwoa</u> « - Ir • I.Area	Area Cont - Pipe Vo 	ributing () lume (m³) = gn Table :	ha) = 6 = 450.2 	5.888 281 torm			on Type	e Auto Desig
	(m) (m)	l Slope	Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area) (ha)	Area Cont Pipe Vo <u>ck Desic</u> adicates T.E. (mins)	ributing () lume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (1/s) 0.0	na) = 6 = 450.2 <u>for St</u> ity < f k (mm) 0.600	5.888 281 torm Elow HYD SECT o	DIA (mm) 300	Secti Pipe/	'Condui	Desig:
	(m) (m)	1 Slope (1: X) 72 300.0	Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area) (ha) 0 0.276	Area Cont Pipe Vo <u>ck Desic</u> ndicates T.E. (mins) 5.00	ributing () lume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (1/s) 0.0	na) = 6 = 450.2 <u>for St</u> ity < f k (mm)	5.888 281 torm Elow HYD SECT o	DIA (mm) 300	Secti Pipe/		Desig:
s3.000 51	(m) (m) 577 0.17 5.093 0.08	1 Slope (1: X) 72 300.0	Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area) (ha) 0 0.276 0 0.051	Area Cont Pipe Vo <u>ck Desic</u> adicates T.E. (mins) 5.00 0.00	ributing (h lume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0	ha) = 6 = 450.2 <u>for St</u> ity < f k (mm) 0.600 0.600	5.888 281 Elow HYD SECT O O	DIA (mm) 300 300	Secti Pipe/ Pipe/	'Condui 'Condui	Desig t 👌
S3.000 51 S3.001 25	(m) (m) 577 0.17 5.093 0.08	1 Slope (1: X) 72 300.0	Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area) (ha) 0 0.276 0 0.051	Area Cont Pipe Vo <u>ck Desic</u> adicates T.E. (mins) 5.00 0.00	ributing (h lume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0	na) = 6 = 450.2 <u>for St</u> ity < f k (mm) 0.600	5.888 281 Elow HYD SECT O O	DIA (mm) 300 300	Secti Pipe/ Pipe/	'Condui	Desig t 👌
S3.000 51 S3.001 25	(m) (m) 577 0.17 5.093 0.08	1 Slope (1: X) 72 300.0	Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area) (ha) 0 0.276 0 0.051	Area Cont Pipe Vo <u>ck Desic</u> adicates T.E. (mins) 5.00 0.00	ributing (h lume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0	ha) = 6 = 450.2 <u>for St</u> ity < f k (mm) 0.600 0.600	5.888 281 Elow HYD SECT O O	DIA (mm) 300 300	Secti Pipe/ Pipe/	'Condui 'Condui	Desig t 👌
S3.000 51 S3.001 25	(m) (m) 577 0.17 5.093 0.08	1 Slope (1: X) 72 300.0	Total A Total <u>Netwon</u> « - Ir • I.Area) 0.276 0 0.276 0 0.051	Area Cont Pipe Vo <u>ck Desic</u> dicates T.E. (mins) 5.00 0.00 5.00	ributing (h lume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0	ha) = 6 = 450.2 for St ity < f k (mm) 0.600 0.600 0.600	5.888 281 Elow HYD SECT O O	DIA (mm) 300 300	Secti Pipe/ Pipe/	'Condui 'Condui	Desig t 👌
S3.000 51 S3.001 25	(m) (m) 577 0.17 5.093 0.08 9.881 0.06 Rain	1 Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C.	Total <i>A</i> Total <i>A</i> Netwon « - Ir • I.Area • (ha) • 0.276 • 0.051 • 0.032 • <u>N</u> us/IL :	Area Cont Pipe Vo Ck Designed dicates T.E. (mins) 5.00 0.00 5.00 etwork E I.Area	ributing (h lume (m ³) = gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 0.0 Results T Σ Base	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul</pre>	5.888 281 Elow HYD SECT 0 0 0	DIA (mm) 300 300 300	Secti Pipe/ Pipe/ Pipe/ Vel	(Condui) (Condui) (Condui)	Desig t d t d t t f f Flow
s3.000 51 s3.001 25 s4.000 19	(m) (m) 577 0.17 5.093 0.08 9.881 0.06	1 Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C.	Total <i>A</i> Total <u>Netwon</u> « - Ir a I.Area (ha) 0 0.276 0 0.032	Area Cont Pipe Vo <u>ck Desic</u> dicates T.E. (mins) 5.00 0.00 5.00 <u>etwork</u>	ributing (f lume (m ³) = gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 0.0 Results T	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul</pre>	5.888 281 Elow HYD SECT 0 0 0	DIA (mm) 300 300 300	Secti Pipe/ Pipe/ Pipe/	(Condui) (Condui) (Condui)	Desig t d t d t t f f Flow
s3.000 51 s3.001 25 s4.000 19	(m) (m) 577 0.17 5.093 0.08 9.881 0.06 Rain (mm/hr)	<pre>l Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C. (mins)</pre>	Total <i>A</i> Total <i>A</i> Netwon « - Ir • I.Area • (ha) • 0.276 • 0.051 • 0.032 • <u>N</u> us/IL :	Area Cont Pipe Vo Ck Designed dicates T.E. (mins) 5.00 0.00 5.00 etwork E I.Area	ributing (h lume (m ³) = gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 0.0 Results T Σ Base	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0</pre>	5.888 281 Elow HYD SECT 0 0 0 0 Add E (1/	DIA (mm) 300 300 300	Secti Pipe/ Pipe/ Pipe/ Vel (m/s)	(Condui) (Condui) (Condui) (Condui) (Condui)	Desig t d t d t t f f Flow
S3.000 51 S3.001 25 S4.000 19 PN	(m) (m) 577 0.17 5.093 0.08 9.881 0.06 Rain (mm/hr) 50.00	<pre>l Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C. (mins) 5.95</pre>	Total <i>A</i> Total <i>A</i> Netwon « - Ir e I.Area) (ha) 0 0.276 0 0.032 0 0.032 <u>N</u> US/IL 2 (m)	Area Cont Pipe Vo Ck Desic Adicates T.E. (mins) 5.00 0.00 5.00 etwork E I.Area (ha)	<pre>ributing (P lume (m³) = gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 Results T E Base Flow (l/s)</pre>	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0</pre>	5.888 281 Elow HYD SECT 0 0 0 0 Add E (1/	DIA (mm) 300 300 300	Secti Pipe/ Pipe/ Pipe/ Vel (m/s)	Condui Condui Condui Condui Cap (1/s) 63.8	Design t f t f t t t t t t t t t t t t t t t t
\$3.000 51 \$3.001 25 \$4.000 19 PN \$3.000 \$3.001	(m) (m) 577 0.17 5.093 0.08 9.881 0.06 Rain (mm/hr) 50.00 50.00	l Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C. (mins) 5.95 6.42	Total <i>A</i> Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area (ha) 0 0.276 0 0.032 0 0.032 <u>N</u> US/IL 2 (m) 69.445 69.273	Area Cont Pipe Vo Ck Desic Addicates T.E. (mins) 5.00 0.00 5.00 etwork E I.Area (ha) 0.276 0.327	<pre>ributing (h lume (m³) = gn Table : gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 Results T E Base Flow (l/s) 0.0 0.0</pre>	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0</pre>	5.888 281 Elow HYD SECT 0 0 0 0 Add F (1/	DIA (mm) 300 300 300 300 300	Secti Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.90	(Condui (Condui) (Con	Desig: t f t f f t f t t t t t t t t t t t t t
\$3.000 51 \$3.001 25 \$4.000 19 PN \$3.000	(m) (m) 577 0.17 5.093 0.08 9.881 0.06 Rain (mm/hr) 50.00 50.00	l Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C. (mins) 5.95 6.42	Total <i>A</i> Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area (ha) 0 0.276 0 0.032 0 0.032 <u>N</u> US/IL 2 (m) 69.445	Area Cont Pipe Vo Ck Desic Adicates T.E. (mins) 5.00 0.00 5.00 etwork E I.Area (ha) 0.276	<pre>ributing (P lume (m³) = gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 Results T E Base Flow (l/s) 0.0</pre>	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0</pre>	5.888 281 Elow HYD SECT 0 0 0 0 Add F (1/	DIA (mm) 300 300 300 300	Secti Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.90	(Condui (Condui) (Con	Design t f t f t t t t t t t t t t t t t t t t
\$3.000 51 \$3.001 25 \$4.000 19 PN \$3.000 \$3.001	(m) (m) 577 0.17 5.093 0.08 9.881 0.06 Rain (mm/hr) 50.00 50.00	l Slope (1:X) 72 300.0 34 300.0 56 300.0 T.C. (mins) 5.95 6.42	Total <i>A</i> Total <i>A</i> Total <u>Netwon</u> « - Ir e I.Area (ha) 0 0.276 0 0.032 0 0.032 <u>N</u> US/IL 2 (m) 69.445 69.273	Area Cont Pipe Vo Ck Desic Adicates T.E. (mins) 5.00 0.00 5.00 etwork E I.Area (ha) 0.276 0.327	<pre>ributing (h lume (m³) = gn Table : gn Table : pipe capaci Base Flow (l/s) 0.0 0.0 Results T E Base Flow (l/s) 0.0 0.0</pre>	<pre>ha) = 6 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0</pre>	5.888 281 Elow HYD SECT 0 0 0 0 Add F (1/	DIA (mm) 300 300 300 300 300	Secti Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.90	(Condui (Condui) (Con	Desig: t f t f f t f t t t t t t t t t t t t t

Clifton Scannell Emerson Associa	tes	Page 2
Seefort Lodge Castledawson		
Blackrock	Surface Watre Network 1	Y.
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s	k) (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S5.000	35.356	0.118	300.0	0.115	5.00	0.	0 0.600	0	300	Pipe/Conduit	ð
	27.383 60.062			0.045 0.124	0.00 0.00		0 0.600 0 0.600	0	300 <mark>300</mark>	Pipe/Conduit Pipe/Conduit	o 1
S3.003	25.151 82.492	0.183	450.0	0.083 0.152	0.00	0.		0 0	450	Pipe/Conduit Pipe/Conduit	e e
\$3.004 \$3.005 \$3.006			450.0	0.099 0.065 0.000	0.00 0.00 0.00	0.	0 0.600 0 0.600 0 0.600	0 0		Pipe/Conduit Pipe/Conduit Pipe/Conduit	6 6
	16.960			0.000	0.00	0.		0		Pipe/Conduit	ď
S6.001	76.899 17.089 44.455	0.038	450.0	0.521 0.069 0.210	5.00 0.00 0.00	0.	0 0.600 0 0.600 0 0.600	0	450	Pipe/Conduit Pipe/Conduit	ð
S6.003		0.110	450.0	0.210	0.00		0 0.600	0		Pipe/Conduit Pipe/Conduit Pipe/Conduit	6 6 6
S6.005	62.002	0.124	500.0	0.143	0.00	0.	0 0.600	0	525	Pipe/Conduit	•
	41.629			0.162	5.00		0 0.600 0 0.600	0		Pipe/Conduit Pipe/Conduit	ð #
50.000	11.029	0.020	525.0	0.000	0.00	0.	0.000	0	525	ripe, conduite	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
s5.000	50.00	5.65	69.750	0.115	0.0	0.0	0.0	0.90	63.8	15.6	
S4.001 S4.002	50.00 50.00		69.632 69.541	0.192 0.316	0.0	0.0	0.0	0.90 0.90	63.7 63.8	26.0 42.8	
S3.002 S3.003	50.00	9.15	69.039 68.983	0.725	0.0	0.0	0.0	0.95	151.5		
S3.004 S3.005 S3.006	50.00 50.00 50.00	11.54	68.800 68.605 68.520	0.976 1.041 1.041	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.95 0.91	151.4 151.4 144.5	140.9 140.9	
s3.007 s6.000	50.00		68.450 69.267	1.041	0.0	0.0	0.0		247.8	70.6	
S6.001 S6.002	50.00	6.65	69.096 69.058	0.590	0.0	0.0	0.0	0.95 0.95	151.4 151.4	79.9 108.3	
S6.003 S6.004 S6.005	50.00 50.00 50.00	9.36	68.959 68.774 68.652	0.972 1.128 1.270	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.05	151.4 227.2 215.4	152.7	
s7.000	50.00	5.75	68.925	0.162	0.0	0.0	0.0	0.93	102.7	21.9	
S6.006	50.00	10.65	68.528	1.433	0.0	0.0	0.0	0.97	209.2	194.0	
			©	1982-201	7 XP Solut	tions					

Clifton Scannell Emerson Associa	tes	Page 3
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S6.007	128.614	0.100	1286.1	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	•
S8.000	66.564	0.222	299.8	0.136	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
S8.001	62.672	0.179	350.1	0.215	0.00	0.0	0.600	0	375	Pipe/Conduit	Ť
S8.002	12.828	0.034	377.3	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S9.000	51.225	0.137	375.0	0.379	5.00	0.0	0.600	0	375	Pipe/Conduit	3
S9.001	11.430	0.030	375.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ð
S8.003	76.069	0.190	400.4	0.171	0.00	0.0	0.600	0	450	Pipe/Conduit	6
S10.000	63.020	0.140	450.0	0.266	5.00	0.0	0.600	0	450	Pipe/Conduit	0 0
S10.001	79.775	0.177	450.0	0.209	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
S8.004	67.190	0.140	479.9	0.211	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S8.005	8.730	0.020	436.5	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	6
S8.006	70.784	0.100	707.8	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	•
s11.000	30.634		373.6	0.048	5.00		0.600	0		Pipe/Conduit	ð
S11.001	71.701		375.4	0.224	0.00	0.0	0.600	0		Pipe/Conduit	6
S11.002	64.030	0.142	450.9	0.272	0.00	0.0	0.600	0	450	Pipe/Conduit	6
S11.003	9.527	0.021	453.7	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	0

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)		
S6.007	50.00	14.13	68.450	1.433	0.0	0.0	0.0	0.62	133.3«	194.0		
S8.000	50.00	6.23	69.585	0.136	0.0	0.0	0.0	0.90	63.8	18.4		
S8.001	50.00	7.31	69.288	0.350	0.0	0.0	0.0	0.96	106.3	47.4		
S8.002	50.00	7.54	69.109	0.350	0.0	0.0	0.0	0.93	102.4	47.4		
S9.000	50.00	5.92	69.800	0.379	0.0	0.0	0.0	0.93	102.7	51.3		
S9.001	50.00	6.12	69.663	0.379	0.0	0.0	0.0	0.93	102.7	51.3		
S8.003	50.00	8.80	69.000	0.900	0.0	0.0	0.0	1.01	160.6	121.9		
S10.000	50.00	6.10	69.322	0.266	0.0	0.0	0.0	0.95	151.4	36.0		
S10.001	50.00	7.50	69.182	0.475	0.0	0.0	0.0	0.95	151.4	64.3		
S8.004	50.00	9.81	68.660	1.586	0.0	0.0	0.0	1.10	312.4	214.8		
S8.005	50.00	9.94	68.520	1.586	0.0	0.0	0.0	1.16	327.7	214.8		
S8.006	50.00	11.24	68.450	1.586	0.0	0.0	0.0	0.91	256.6	214.8		
S11.000	50.00	5.63	69.684	0.048	0.0	0.0	0.0	0.81	57.1	6.6		
S11.001	50.00	6.92	69.527	0.272	0.0	0.0	0.0	0.93	102.6	36.9		
S11.002	50.00	8.04	69.261	0.544	0.0	0.0	0.0	0.95	151.2	73.7		
S11.003	50.00	8.21	69.119	0.544	0.0	0.0	0.0	0.95	150.8	73.7		
	©1982-2017 XP Solutions											

Clifton Scannell Emerson Associa	Page 4	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	4
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S12.000				0.104	5.00		0.600	0		Pipe/Conduit	۵
S12.001	10.407	0.035	297.3	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ீ
S11.004	31.398	0.070	448.5	0.087	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
S13.000	83.500	0.167	500.0	0.519	5.00	0.0	0.600	0	525	Pipe/Conduit	0
S13.001	83.500	0.167	500.0	0.358	0.00	0.0	0.600	0	525	Pipe/Conduit	Ť
S11.005	73.956	0.123	600.0	0.220	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S14.000	74.921	0.200	374.6	0.208	5.00	0.0	0.600	0	375	Pipe/Conduit	0
S14.001	74.921	0.200	374.6	0.217	0.00	0.0	0.600	0	375	Pipe/Conduit	÷
S11.006	14.850	0.025	594.0	0.059	0.00	0.0	0.600	0	600	Pipe/Conduit	
S15.000	55.222	0.158	350.0	0.167	5.00	0.0	0.600	0	375	Pipe/Conduit	0
S15.001	64.122	0.183	350.4	0.188	0.00	0.0	0.600	0	375	Pipe/Conduit	ē
S15.002	60.444	0.173	350.0	0.042	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S11.007	44.617	0.059	756.2	0.116	0.00	0.0	0.600	0	750	Pipe/Conduit	8
S11.008	8.824	0.021	420.2	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S12.000	50.00	5.59	69.400	0.104	0.0	0.0	0.0	0.90	63.9	14.0	
S12.000	50.00		69.292	0.104	0.0	0.0	0.0	0.90	64.1	14.0	
S11.004	50.00	8.76	69.098	0.735	0.0	0.0	0.0	0.95	151.6	99.5	
S13.000	50.00	6.40	69.295	0.519	0.0	0.0	0.0	0.99	215.4	70.2	
S13.001	50.00	7.80	69.128	0.877	0.0	0.0	0.0	0.99	215.4	118.8	
S11.005	50.00	10 01	68.878	1.832	0.0	0.0	0 0	0.99	279.0	040 1	
511.005	50.00	10.01	68.8/8	1.832	0.0	0.0	0.0	0.99	2/9.0	248.1	
S14.000	50.00	6.34	69.380	0.208	0.0	0.0	0.0	0.93	102.7	28.1	
S14.001	50.00		69.180	0.425	0.0	0.0	0.0	0.93	102.7	57.5	
S11.006	50.00	10.26	68.755	2.316	0.0	0.0	0.0	0.99	280.4«	313.6	
S15.000	50.00	5.96	69.470	0.167	0.0	0.0	0.0	0.96	106.3	22.6	
S15.001	50.00	7.07	69.312	0.354	0.0	0.0	0.0	0.96	106.3	48.0	
S15.002	50.00	8.11	69.129	0.397	0.0	0.0	0.0	0.96	106.3	53.7	
~11 005		10.00			0.0		0.0				
S11.007	50.00	10.99		2.829	0.0	0.0	0.0	1.01	446.1		
S11.008	50.00	11.10	68.521	2.829	0.0	0.0	0.0	1.36	600.3	383.1	
				1000 001							
			C	1982-201	7 XP Solut	LIONS					

Clifton Scannell Emerson Associa	Page 5	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micco
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Dialitaye
Micro Drainage	Network 2017.1.2	

PN	Length (m)		-			Base Flow (l/s)		HYD SECT			Auto Design
S11.009	48.419	0.100	484.2	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	•
S3.008	70.492	0.050	1409.8	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	0

<u>Network Results Table</u>

PN			•		Σ Base Flow (l/s)				-	Flow (l/s)
S11.009	50.00	11.74	68.450	2.829	0.0	0.0	0.0	1.26	558.9	383.1
S3.008	50.00	15.73	68.350	6.888	0.0	0.0	0.0	0.74	325.3«	932.8

©1982-2017 XP Solutions

Clifton Scannell Emerson Associa	Page 6	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Dialitada
Micro Drainage	Network 2017.1.2	

<u>Manhole Schedules for Storm</u>

Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Bac
SWMH-20.1	70.800	1.355	Open Manhole	1200	s3.000	69.445	300				
SWMH-20.2	70.750	1.477	Open Manhole	1200	s3.001	69.273	300	S3.000	69.273	300	
SWMH-21.1	71.397	1.697	Open Manhole	1200	S4.000	69.700	300				
SWMH-22.1	71.720	1.970	Open Manhole	1200	S5.000	69.750	300				
SWMH-21.2	71.567	1.935	Open Manhole	1200	S4.001	69.632	300	S4.000	69.634	300	
								S5.000	69.632	300	
SWMH-21.3	71.143	1.602	Open Manhole	1200	S4.002	69.541	300	S4.001	69.541	300	
SWMH-20.3	70.850	1.811	Open Manhole	1350	S3.002	69.039	450	S3.001	69.189	300	
								S4.002	69.341	300	
SWMH-20.4	70.645	1.662	Open Manhole	1350	s3.003	68.983	450	S3.002	68.983	450	
SWMH-20.5	70.645	1.845	Open Manhole	1350	S3.004	68.800	450	S3.003	68.800	450	
SWMH-20.6	70.645	2.040	Open Manhole	1350	S3.005	68.605	450	S3.004	68.605	450	
SWMH-20.7	70.645	2.125	Open Manhole	1350	S3.006	68.520	450	S3.005	68.520	450	
SWMH-20.8	70.806	2.356	Open Manhole	1350	S3.007	68.450	450	S3.006	68.500	450	
SWMH-10.1	70.778	1.511	Open Manhole	1350	S6.000	69.267	450				
SWMH-10.2	71.138	2.042	Open Manhole	1350	S6.001	69.096	450	S6.000	69.096	450	
SWMH-10.3	70.725	1.667	Open Manhole	1350	S6.002	69.058	450	S6.001	69.058	450	
SWMH-10.4	70.600	1.641	Open Manhole	1350	S6.003	68.959	450	S6.002	68.959	450	
SWMH-10.5	70.550	1.776	Open Manhole	1500	S6.004	68.774	525	S6.003	68.849	450	
SWMH-10.6	70.525	1.900	Open Manhole	1500	S6.005	68.652	525	S6.004	68.625	525	
SWMH-11.1	70.630	1.705	Open Manhole	1350	S7.000	68.925	375				
SWMH-10.7	70.200	1.672	Open Manhole	1500	S6.006	68.528	525	S6.005	68.528	525	
								S7.000	68.814	375	
SWMH-10.8	70.692	2.242	Open Manhole	1500	S6.007	68.450	525	S6.006	68.500	525	
SWMH-30.1	71.234	1.649	Open Manhole	1200	S8.000	69.585	300				
SWMH-30.2	71.156	1.868	Open Manhole	1350	S8.001	69.288	375	S8.000	69.363	300	
SWMH-30.3	71.151	2.042	Open Manhole	1350	S8.002	69.109	375	S8.001	69.109	375	
SWMH-31.1	70.850	1.050	Open Manhole	1350	S9.000	69.800	375				
SWMH-31.2	71.003	1.339	Open Manhole	1350	S9.001	69.663	375	S9.000	69.663	375	
SWMH-30.4	71.026	2.026	Open Manhole	1350	S8.003	69.000	450	S8.002	69.075	375	
								S9.001	69.633	375	
SWMH-32.1	70.939	1.617	Open Manhole	1350	S10.000	69.322	450				
SWMH-32.2	70.950	1.768	Open Manhole	1350	S10.001	69.182	450	S10.000	69.182	450	
SWMH-30.5	71.091	2.431	Open Manhole	1500	S8.004	68.660	600	S8.003	68.810	450	
l								S10.001	69.005	450	
SWMH-30.6	70.443	1.923	Open Manhole	1500	S8.005	68.520	600	S8.004	68.520	600	
SWMH-30.7	70.200	1.750	Open Manhole	1500	S8.006	68.450	600	S8.005	68.500	600	
SWMH-40.1	71.060	1.376	Open Manhole	1200	s11.000	69.684	300				

Clifton Scannell Emerson Associa	Page 7	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

			<u>Manhole</u> 9	Schedules	for St	orm					
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes Inve Level		Diameter H (mm)
SWMH-40.2	71.035	1.508	Open Manhole	1350	S11.001	69.527	375	s11.000	69	.602	300
SWMH-40.3	70.575	1.314	Open Manhole	1350	S11.002	69.261	450	S11.001	69	.336	375
SWMH-40.4	71.175	2.056	Open Manhole	1350	s11.003	69.119	450	S11.002	69	.119	450
SWMH-44.1	70.593	1.193	Open Manhole	1200	S12.000	69.400	300				
SWMH-44.2	70.931	1.639	Open Manhole	1200	S12.001	69.292	300	S12.000	69	.292	300
SWMH-40.5	71.270	2.172	Open Manhole	1350	S11.004	69.098	450	S11.003	69	.098	450
								S12.001	69	.257	300
SWMH-41.1	70.890	1.595	Open Manhole	1500	s13.000	69.295	525				
SWMH-41.2	70.831	1.703	Open Manhole	1500	S13.001	69.128	525	S13.000	69	.128	525
SWMH-40.6	70.940	2.062	Open Manhole	1500	S11.005	68.878	600	S11.004	69	.028	450
								S13.001	68	.961	525
SWMH-42.1	70.950	1.570	Open Manhole	1350	S14.000	69.380	375				
SWMH-42.2	70.950	1.770	Open Manhole	1350	S14.001	69.180	375	S14.000	69	.180	375
SWMH-40.7	70.800	2.045	Open Manhole	1500	S11.006	68.755	600	S11.005	68	.755	600
								S14.001	68	.980	375
SWMH-43.1	70.595	1.125	Open Manhole	1350	S15.000	69.470	375				
SWMH-43.2	70.440	1.128	Open Manhole	1350	S15.001	69.312	375	S15.000	69	.312	375
SWMH-43.3	70.370	1.241	Open Manhole	1350	s15.002	69.129	375	S15.001	69	.129	375
SWMH-40.8	70.840	2.260	Open Manhole	1800	S11.007	68.580	750	S11.006	68	.730	600
								S15.002	68	.957	375
SWMH-40.9	70.340	1.819	Open Manhole	1800	S11.008	68.521	750	S11.007	68	.521	750
SWMH-40.10	70.200	1.750	Open Manhole	1800	S11.009	68.450	750	S11.008	68	.500	750
SWMH-OUTFALL	70.000	1.650	Open Manhole	1800	S3.008	68.350	750	s3.007	68	.350	450
								S6.007	68	.350	525
								S8.006	68	.350	600
								S11.009	68	.350	750
SWMH-	69.957	1.657	Open Manhole	0		OUTFALL		S3.008	68	.300	750

Manhole Schedules for Storm

©1982-2017 XP Solutions

Clifton Scannell Emerson Associa	Page 8	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.000	0	300	SWMH-20.1	70.800	69.445	1.055	Open Manhole	e 1200
S3.001	0	300	SWMH-20.2	70.750	69.273	1.177	Open Manhole	e 1200
S4.000	0	300	SWMH-21.1	71.397	69.700	1.397	Open Manhole	e 1200
S5.000	0	300	SWMH-22.1	71.720	69.750	1.670	Open Manhole	e 1200
S4.001	0	300	SWMH-21.2	71.567	69.632	1.635	Open Manhole	e 1200
S4.002	0	300	SWMH-21.3	71.143	69.541	1.302	Open Manhole	e 1200
S3.002	0	450	SWMH-20.3	70.850	69.039	1.361	Open Manhole	e 1350
S3.003	0	450	SWMH-20.4	70.645	68.983	1.212	Open Manhole	e 1350
S3.004	0	450	SWMH-20.5	70.645	68.800	1.395	Open Manhole	e 1350
S3.005	0	450	SWMH-20.6	70.645	68.605	1.590	Open Manhole	e 1350
S3.006	0	450	SWMH-20.7	70.645	68.520	1.675	Open Manhole	e 1350
S3.007	0	450	SWMH-20.8	70.806	68.450	1.906	Open Manhole	e 1350
S6.000	0	450	SWMH-10.1	70.778	69.267	1.061	Open Manhole	e 1350
S6.001	0	450	SWMH-10.2	71.138	69.096	1.592	Open Manhole	e 1350
S6.002	0	450	SWMH-10.3	70.725	69.058	1.217	Open Manhole	e 1350
S6.003	0	450	SWMH-10.4	70.600	68.959	1.191	Open Manhole	e 1350

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.000	51.577	300.0	SWMH-20.2	70.750	69.273	1.177	Open Manhole	1200
S3.001	25.093	300.0	SWMH-20.3	70.850	69.189	1.361	Open Manhole	1350
S4.000	19.881	300.0	SWMH-21.2	71.567	69.634	1.633	Open Manhole	1200
S5.000	35.356	300.0	SWMH-21.2	71.567	69.632	1.635	Open Manhole	1200
S4.001	27.383	300.9	SWMH-21.3	71.143	69.541	1.302	Open Manhole	1200
S4.002	60.062	300.3	SWMH-20.3	70.850	69.341	1.209	Open Manhole	1350
S3.002	25.151	449.1	SWMH-20.4	70.645	68.983	1.212	Open Manhole	1350
S3.003	82.492	450.0	SWMH-20.5	70.645	68.800	1.395	Open Manhole	1350
S3.004	87.889	450.0	SWMH-20.6	70.645	68.605	1.590	Open Manhole	1350
S3.005	38.209	450.0	SWMH-20.7	70.645	68.520	1.675	Open Manhole	1350
S3.006	9.872	493.6	SWMH-20.8	70.806	68.500	1.856	Open Manhole	1350
S3.007	16.960	169.6	SWMH-OUTFALL	70.000	68.350	1.200	Open Manhole	1800
S6.000	76.899	450.0	SWMH-10.2	71.138	69.096	1.592	Open Manhole	1350
S6.001	17.089	450.0	SWMH-10.3	70.725	69.058	1.217	Open Manhole	1350
S6.002	44.455	450.0	SWMH-10.4	70.600	68.959	1.191	Open Manhole	1350
S6.003	49.696	450.0	SWMH-10.5	70.550	68.849	1.251	Open Manhole	1500
			©198	2-2017	XP Solu	utions		

Clifton Scannell Emerson Associa	Page 9	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S6.004	0	525	SWMH-10.5	70.550	68.774	1.251	Open Manhole	1500
S6.005	0	525	SWMH-10.6	70.525	68.652	1.348	Open Manhole	1500
S7.000	0	375	SWMH-11.1	70.630	68.925	1.330	Open Manhole	1350
S6.006	0	525	SWMH-10.7	70.200	68.528	1.147	Open Manhole	1500
S6.007	0	525	SWMH-10.8	70.692	68.450	1.717	Open Manhole	1500
S8.000	0	300	SWMH-30.1	71.234	69.585	1.349	Open Manhole	1200
S8.001	0	375	SWMH-30.2	71.156	69.288	1.493	Open Manhole	1350
S8.002	0	375	SWMH-30.3	71.151	69.109	1.667	Open Manhole	1350
S9.000	0	375	SWMH-31.1	70.850	69.800	0.675	Open Manhole	1350
S9.001	0	375	SWMH-31.2	71.003	69.663	0.964	Open Manhole	1350
S8.003	0	450	SWMH-30.4	71.026	69.000	1.576	Open Manhole	1350
S10.000	0	450	SWMH-32.1	70.939	69.322	1.167	Open Manhole	1350
S10.001	0	450	SWMH-32.2	70.950	69.182	1.318	Open Manhole	1350
S8.004	0	600	SWMH-30.5	71.091	68.660	1.831	Open Manhole	1500

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S6.004	66.906	450.0	SWMH-10.6	70.525	68.625	1.375	Open Manhole	1500
S6.005	62.002	500.0	SWMH-10.7	70.200	68.528	1.147	Open Manhole	1500
s7.000	41.629	375.0	SWMH-10.7	70.200	68.814	1.011	Open Manhole	1500
S6.006	14.829	529.6	SWMH-10.8	70.692	68.500	1.667	Open Manhole	1500
S6.007	128.614	1286.1	SWMH-OUTFALL	70.000	68.350	1.125	Open Manhole	1800
S8.000	66.564	299.8	SWMH-30.2	71.156	69.363	1.493	Open Manhole	1350
S8.001	62.672	350.1	SWMH-30.3	71.151	69.109	1.667	Open Manhole	1350
S8.002	12.828	377.3	SWMH-30.4	71.026	69.075	1.576	Open Manhole	1350
S9.000	51.225	375.0	SWMH-31.2	71.003	69.663	0.964	Open Manhole	1350
S9.001	11.430	375.0	SWMH-30.4	71.026	69.633	1.018	Open Manhole	1350
S8.003	76.069	400.4	SWMH-30.5	71.091	68.810	1.831	Open Manhole	1500
S10.000	63.020	450.0	SWMH-32.2	70.950	69.182	1.318	Open Manhole	1350
S10.001	79.775	450.0	SWMH-30.5	71.091	69.005	1.636	Open Manhole	1500
S8.004	67.190	479.9	SWMH-30.6	70.443	68.520	1.323	Open Manhole	1500
			©1982	-2017 X	P Solut	ions		

Clifton Scannell Emerson Associa	Page 10	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S8.005	0	600	SWMH-30.6	70.443	68.520	1.323	Open Manhole	1500
S8.006	0	600	SWMH-30.7	70.200	68.450	1.150	Open Manhole	1500
S11.000	0	300	SWMH-40.1	71.060	69.684	1.076	Open Manhole	1200
S11.001	0	375	SWMH-40.2	71.035	69.527	1.133	Open Manhole	1350
S11.002	0	450	SWMH-40.3	70.575	69.261	0.864	Open Manhole	1350
S11.003	0	450	SWMH-40.4	71.175	69.119	1.606	Open Manhole	1350
S12.000	0	300	SWMH-44.1	70.593	69.400	0.893	Open Manhole	1200
S12.001	0	300	SWMH-44.2	70.931	69.292	1.339	Open Manhole	1200
S11.004	0	450	SWMH-40.5	71.270	69.098	1.722	Open Manhole	1350
S13.000	0	525	SWMH-41.1	70.890	69.295	1.070	Open Manhole	1500
S13.001	0	525	SWMH-41.2	70.831	69.128	1.178	Open Manhole	1500
S11.005	0	600	SWMH-40.6	70.940	68.878	1.462	Open Manhole	1500
S14.000	0	375	SWMH-42.1	70.950	69.380	1.195	Open Manhole	1350
S14.001	0	375	SWMH-42.2	70.950	69.180	1.395	Open Manhole	1350

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)		
S8.005	8.730	436.5	SWMH-30.7	70.200	68.500	1.100	Open Manhole	1500		
S8.006	70.784	707.8	SWMH-OUTFALL	70.000	68.350	1.050	Open Manhole	1800		
S11.000	30.634	373.6	SWMH-40.2	71.035	69.602	1.133	Open Manhole	1350		
S11.001	71.701	375.4	SWMH-40.3	70.575	69.336	0.864	Open Manhole	1350		
S11.002	64.030	450.9	SWMH-40.4	71.175	69.119	1.606	Open Manhole	1350		
S11.003	9.527	453.7	SWMH-40.5	71.270	69.098	1.722	Open Manhole	1350		
S12.000	32.276	298.9	SWMH-44.2	70.931	69.292	1.339	Open Manhole	1200		
S12.001	10.407	297.3	SWMH-40.5	71.270	69.257	1.713	Open Manhole	1350		
S11.004	31.398	448.5	SWMH-40.6	70.940	69.028	1.462	Open Manhole	1500		
S13.000	83.500	500.0	SWMH-41.2	70.831	69.128	1.178	Open Manhole	1500		
S13.001	83.500	500.0	SWMH-40.6	70.940	68.961	1.454	Open Manhole	1500		
S11.005	73.956	600.0	SWMH-40.7	70.800	68.755	1.445	Open Manhole	1500		
S14.000	74.921	374.6	SWMH-42.2	70.950	69.180	1.395	Open Manhole	1350		
S14.001	74.921	374.6	SWMH-40.7	70.800	68.980	1.445	Open Manhole	1500		
©1982-2017 XP Solutions										

Clifton Scannell Emerson Associa	Page 11	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.006	0	600	SWMH-40.7	70.800	68.755	1.445	Open Manhole	1500
s15.000	0	375	SWMH-43.1	70.595	69.470	0.750	Open Manhole	1350
S15.001	0	375	SWMH-43.2	70.440	69.312	0.753	Open Manhole	1350
S15.002	0	375	SWMH-43.3	70.370	69.129	0.866	Open Manhole	1350
S11.007	0	750	SWMH-40.8	70.840	68.580	1.510	Open Manhole	1800
S11.008	0	750	SWMH-40.9	70.340	68.521	1.069	Open Manhole	1800
S11.009	0	750	SWMH-40.10	70.200	68.450	1.000	Open Manhole	1800
S3.008	0	750	SWMH-OUTFALL	70.000	68.350	0.900	Open Manhole	1800

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.006	14.850	594.0	SWMH-40.8	70.840	68.730	1.510	Open Manhole	1800
s15.000	55.222	350.0	SWMH-43.2	70.440	69.312	0.753	Open Manhole	1350
S15.001	64.122	350.4	SWMH-43.3	70.370	69.129		Open Manhole	1350
S15.002	60.444	350.0	SWMH-40.8	70.840	68.957	1.508	Open Manhole	1800
S11.007	44.617	756.2	SWMH-40.9	70.340	68.521	1.069	Open Manhole	1800
S11.008	8.824	420.2	SWMH-40.10	70.200	68.500	0.950	Open Manhole	1800
S11.009	48.419	484.2	SWMH-OUTFALL	70.000	68.350	0.900	Open Manhole	1800
S3.008	70.492	1409.8	SWMH-	69.957	68.300	0.907	Open Manhole	0

Clifton Scannell Emerson Associa	Page 12	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Classification Roof 100 0.048 0.048 0.14 Classification Road 100 0.051 0.051 0.05 4.000 Classification Road 100 0.051 0.05 Classification Gravel 75 0.123 0.092 0.03 Classification Gravel 75 0.123 0.092 0.03 Classification Road 100 0.018 0.018 0.03 Classification Road 100 0.027 0.027 0.027 4.001 Classification Road 100 0.124 0.124 0.12 3.002 Classification Road 100 0.152 0.152 0.13 3.003 Classification Road 100 0.055 0.065 0.06 3.004 Classification Road 100 0.065 0.065 0.06 3.005 Classification Road 100 0.027 0.027 0.027 Classification Road 100 0.052 0.058 0.06 3.006 100 0.000 0.000 0.00 Classification Road 100 0.055 0.065 0.06 3.006 100 0.000 0.000 0.00 Classification Grass 30 0.273 0.082 0.00 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.022 0.12 Classification Road 100 0.022 0.12 Classification Gravel 75 0.045 0.034 0.03 Classification Gravel 75 0.045 0.034 0.03 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.000 0.000 0.00 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.072 0.072 0.11 6.004 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.052 0.052 0.14 7.000 Classification Gravel 75 0.045 0.034 0.03 Classification Gravel 75 0.045 0.034 0.03 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.000 0.000 0.00 Classification Road 100 0.002 0.002 0.01 Classification Road 100 0.003 0.003 0.03 8.000 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.000 0.000 0.00 Classification Road 100 0.000 0.000 0.00 Classification Gravel 75 0.083 0.062 0.11 Classification Gravel 75 0.083 0.062 0.11 Classification Gravel 75 0.083 0.062	Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
Classification Road 100 0.088 0.088 0.27 3.001 Classification Road 100 0.032 0.032 0.032 4.000 Classification Gravel 75 0.123 0.092 0.032 Classification Gravel 75 0.123 0.092 0.032 Classification Road 100 0.018 0.018 0.012 4.001 Classification Road 100 0.124 0.124 0.12 3.002 Classification Road 100 0.052 0.152 0.11 3.004 Classification Road 100 0.065 0.063 3.005 Classification Road 100 0.000 0.000 0.000 3.006 - - 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.000 0.000 3.006 - - 100 0.000 <	3.000	Classification	Gravel	75	0.187	0.140	0.140
3.001 Classification Road 100 0.051 0.051 0.051 4.000 Classification Gravel 75 0.123 0.092 0.032 5.000 Classification Gravel 75 0.123 0.092 0.032 4.001 Classification Road 100 0.018 0.018 0.007 4.002 Classification Road 100 0.124 0.124 0.124 3.002 Classification Road 100 0.063 0.063 0.063 3.004 Classification Road 100 0.065 0.065 0.063 3.006 - - 100 0.000 0.000 0.000 3.006 - - 100 0.000 0.000 0.000 3.006 - - 100 0.000 0.000 0.000 3.006 - - 100 0.027 0.022 0.032 3.007 - - 100 0.000 0.000 0.000 3.0007 -		Classification	Roof	100	0.048	0.048	0.188
4.000 Classification Road 100 0.032 0.032 0.032 5.000 Classification Gravel 75 0.123 0.092 0.032 4.001 Classification Gravel 75 0.123 0.092 0.012 4.001 Classification Road 100 0.018 0.012 0.012 4.002 Classification Road 100 0.027 0.027 0.027 3.002 Classification Road 100 0.012 0.124 0.12 3.004 Classification Road 100 0.055 0.065 0.00 3.006 - - 100 0.000 0.000 0.00 3.007 - - 100 0.000 0.000 0.00 3.006 - - 100 0.000 0.000 0.00 3.007 - - 100 0.000 0.000 0.00 3.007 - - 100 0.000 0.000 0.00 Classification Grassi		Classification	Road	100	0.088	0.088	0.276
5.000 Classification Grass 30 0.076 0.023 0.017 4.001 Classification Road 100 0.018 0.007 0.027 0.04 3.002 Classification Road 100 0.0124 0.124 0.124 3.002 Classification Road 100 0.152 0.152 0.113 3.003 Classification Road 100 0.083 0.083 0.003 3.004 Classification Road 100 0.055 0.065 0.065 3.005 Classification Grass 30 0.273 0.082 0.093 3.007 - - 100 0.000 0.000 0.000 Classification Grassification Grassification Grassification Grassification Grassification 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027	3.001	Classification	Road	100	0.051	0.051	0.051
5.000 Classification Grass 30 0.076 0.023 0.017 4.001 Classification Road 100 0.018 0.007 0.027 0.04 3.002 Classification Road 100 0.0124 0.124 0.124 3.002 Classification Road 100 0.152 0.152 0.113 3.004 Classification Road 100 0.083 0.083 0.003 3.004 Classification Road 100 0.005 0.005 0.000 0.000 3.005 Classification Road 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.000 0.000 Classification Grassification	4.000	Classification	Road	100	0.032	0.032	0.032
4.001 Classification Road 100 0.018 0.018 0.01 Classification Road 100 0.027 0.027 0.027 4.002 Classification Road 100 0.124 0.124 0.12 3.002 Classification Road 100 0.083 0.093 0.093 3.004 Classification Road 100 0.065 0.065 0.001 3.005 Classification Road 100 0.065 0.000 0.000 3.006 - - 100 0.000 0.000 0.000 6.000 Classification Grassification Grassification Grassification Grassification Grassification 6.001 Classification Grassification Grassific	5.000	Classification	Gravel	75		0.092	0.092
Classification Road 100 0.027 0.027 0.04 4.002 Classification Road 100 0.124 0.124 0.12 3.002 Classification Road 100 0.152 0.152 0.15 3.004 Classification Road 100 0.055 0.065 0.06 3.005 Classification Road 100 0.065 0.065 0.00 3.006 100 0.000 0.000 0.00 6.000 Classification Grass 30 0.273 0.082 0.00 Classification Road 100 0.127 0.127 0.20 Classification Road 100 0.254 0.254 0.55 6.001 Classification Grass 30 0.127 0.038 0.00 Classification Gravel 75 0.078 0.058 0.22 Classification Gravel 75 0.041 0.031 0.00 6.002 Classification Grass 30 0.127 0.038 0.00 Classification Gravel 75 0.045 0.034 0.00 Classification Road 100 0.100 0.100 0.11 Classification Road 100 0.100 0.100 0.11 Classification Road 100 0.072 0.072 0.17 6.004 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.121 0.091 0.00 Classification Gravel 75 0.132 0.099 0.14 6.006 100 0.000 0.000 0.00 Classification Grass 30 0.199 0.063 0.06 Classification Grass 30 0.199 0.060 0.00 Classification Grass 30 0.174 0.052 0.03 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.11 Classification Gravel 75		Classification	Grass	30	0.076	0.023	0.115
Classification Road 100 0.027 0.027 0.027 3.002 Classification Road 100 0.124 0.124 0.123 3.003 Classification Road 100 0.083 0.003 0.003 3.004 Classification Road 100 0.055 0.055 0.065 3.006 - - 100 0.000 0.000 0.000 3.006 - - 100 0.000 0.000 0.000 3.006 - - 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.000 0.000 Glassification Grassification Grassification Grassification Grassification 0.027 0.038 0.027 Classification Grassification Grassification Grassification 0.045 0.034 0.072 Classification Road 100 0.069 0.069 0.227 0.172	4.001	Classification	Road	100	0.018	0.018	0.018
3.002 Classification Road 100 0.083 0.083 0.083 3.004 Classification Road 100 0.152 0.152 0.152 3.004 Classification Road 100 0.065 0.065 0.000 3.005 Classification Road 100 0.065 0.065 0.000 3.006 - - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.273 0.082 0.026 Classification Gravel 75 0.078 0.058 0.226 Classification Gravel 75 0.041 0.031 0.000 Classification Gravel 75 0.045 0.034 0.027 Classification Gravel 75 0.045 0.034 0.027 Classification Road 100 0.069 0.22 0.122 0.12 Classification Road 100 0.069 0.02 0.058 0.22 6.003 Classification		Classification	Road	100		0.027	0.045
3.003 Classification Road 100 0.152 0.152 0.152 3.004 Classification Road 100 0.099 0.099 0.093 3.005 Classification Road 100 0.065 0.065 0.063 3.006 - - 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.273 0.082 0.002 Classification Grass 30 0.273 0.082 0.024 Classification Grass 30 0.127 0.038 0.027 Classification Gravel 75 0.041 0.031 0.006 Classification Grass 30 0.073 0.022 0.11 Classification Road 100 0.069 0.69 0.22 6.003 Classification Road 100 0.102 0.12 Classification Road 100 0.102 0.12	4.002	Classification	Road	100	0.124	0.124	0.124
3.003 Classification Road 100 0.152 0.152 0.152 3.004 Classification Road 100 0.099 0.099 0.093 3.005 Classification Road 100 0.065 0.065 0.063 3.007 - - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.273 0.082 0.001 Classification Gravel 75 0.078 0.058 0.22 Classification Gravel 75 0.041 0.031 0.001 Classification Gravel 75 0.045 0.034 0.012 Classification Gravel 75 0.045 0.034 0.011 Classification Road 100 0.100 0.112 0.122 0.12 Classification Road 100 0.069 0.69 0.22 0.12 Classification Road 100 0.102 0.122 0.12 0.12 Classification Road 100<	3.002	Classification	Road	100	0.083	0.083	0.083
3.004 Classification Road 100 0.099 0.099 0.099 3.005 Classification Road 100 0.065 0.065 0.065 3.006 - - 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.002 0.002 Classification Gravel 75 0.078 0.058 0.224 Classification Gravel 75 0.041 0.031 0.000 Classification Gravel 75 0.041 0.031 0.000 Classification Gravel 75 0.041 0.031 0.001 Classification Gravel 75 0.041 0.031 0.001 Classification Gravel 75 0.045 0.034 0.012 Classification Road 100 0.069 0.022 0.12 Classification Road 100 0.100 0.100 0.101 Classification Road 100 0.022 0.122 0.12	3.003	Classification	Road				0.152
3.005 Classification Road 100 0.065 0.065 0.065 3.006 - - 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.273 0.082 0.000 Classification Gravel 75 0.078 0.058 0.224 Classification Gravel 75 0.041 0.031 0.000 Classification Gravel 75 0.045 0.034 0.000 Classification Gravel 75 0.045 0.034 0.012 Classification Gravel 75 0.045 0.034 0.012 Classification Road 100 0.069 0.022 0.12 Classification Road 100 0.069 0.022 0.12 Classification Road 100 0.010 0.100 0.100 Classification Gravel 75 0.121 0.091 0.092							0.099
3.006 - - 100 0.000 0.000 0.000 3.007 - - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.273 0.082 0.001 Classification Grass 30 0.273 0.082 0.021 Classification Gravel 75 0.078 0.058 0.274 Classification Gravel 75 0.041 0.031 0.000 Classification Gravel 75 0.041 0.034 0.017 Classification Gravel 75 0.045 0.034 0.017 Classification Gravel 75 0.045 0.034 0.017 Classification Road 100 0.069 0.221 0.122 Classification Road 100 0.100 0.100 0.101 Classification Road 100 0.102 0.022 0.122 Classification Gravel 75 0.121 0.991 0.090 Classification<							0.065
3.007 - - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.273 0.082 0.000 Classification Road 100 0.127 0.127 0.220 Classification Gravel 75 0.078 0.058 0.224 Classification Gravel 75 0.041 0.031 0.000 Classification Gravel 75 0.041 0.034 0.001 Classification Gravel 75 0.045 0.034 0.012 Classification Gravel 75 0.045 0.034 0.012 Classification Gravel 75 0.045 0.034 0.012 Classification Road 100 0.069 0.022 0.12 Classification Roaf 100 0.072 0.72 0.17 6.003 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.121 0.091 0.06 Cl		-					0.000
6.000 Classification Grass 30 0.273 0.082 0.062 Classification Road 100 0.127 0.127 0.22 Classification Gravel 75 0.078 0.058 0.23 Classification Gravel 75 0.078 0.058 0.254 6.001 Classification Gravel 75 0.041 0.031 0.003 Classification Gravel 75 0.045 0.034 0.031 Classification Road 100 0.069 0.22 0.12 Classification Road 100 0.100 0.10 0.11 Classification Road 100 0.072 0.072 0.17 6.004 Classification Road 100 0.052 0.052 Classifica		-					0.000
Classification Road 100 0.127 0.127 0.20 Classification Gravel 75 0.078 0.058 0.20 Classification Grass 30 0.127 0.038 0.00 Classification Gravel 75 0.041 0.031 0.00 6.002 Classification Gravel 75 0.045 0.034 0.00 Classification Gravel 75 0.045 0.034 0.00 Classification Road 100 0.084 0.084 0.11 Classification Road 100 0.069 0.069 0.22 6.003 Classification Road 100 0.100 0.100 0.100 Classification Road 100 0.072 0.072 0.17 6.004 Classification Gravel 75 0.045 0.034 0.122 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.132 0.099 0.16 6.006 100 0.000 0.000 0.00 Classification Gravel 75 0.132 0.099 0.16 6.007 100 0.000 0.000 0.00 8.000 Classification Grass 30 0.209 0.063 0.06 Classification Gravel 75 0.132 0.099 0.16 6.007 100 0.000 0.000 0.00 8.000 Classification Grass 30 0.209 0.063 0.06 Classification Grass 30 0.209 0.063 0.06 Classification Grass 30 0.209 0.063 0.00 Classification Grass 30 0.199 0.060 0.00 Classification Gravel 75 0.132 0.099 0.12 Classification Grass 30 0.199 0.060 0.00 8.000 Classification Grass 30 0.199 0.060 0.00 Classification Road 100 0.090 0.090 0.22 8.002 100 0.000 0.000 0.00 9.000 Classification Grass 30 0.199 0.060 0.00 9.001 100 0.000 0.000 0.00 9.001 Classification Grase 30 0.174 0.052 0.03 0.13 9.001 100 0.000 0.000 0.00 8.003 Classification Grase 70 0.98 0.198 0.3 9.001 100 0.000 0.000 0.00 8.003 Classification Gravel 75 0.096 0.072 0.07 10.000 Classification Gravel 75 0.096 0.072		Classification					0.082
Classification Gravel 75 0.078 0.058 0.24 Classification Roof 100 0.254 0.254 0.55 6.001 Classification Grass 30 0.127 0.038 0.00 Classification Gravel 75 0.041 0.031 0.04 Classification Gravel 75 0.045 0.034 0.05 Classification Grass 30 0.073 0.022 0.14 Classification Road 100 0.069 0.069 0.25 6.003 Classification Road 100 0.100 0.100 0.100 Classification Roof 100 0.072 0.072 0.17 6.004 Classification Gravel 75 0.045 0.034 0.15 Classification Road 100 0.100 0.100 0.100 Classification Road 100 0.102 0.100 0.100 Classification Gravel 75 0.045 0.034 0.15 6.005 Classification Gravel 75 0.121 0.091 0.05 Classification Gravel 75 0.121 0.091 0.05 Classification Gravel 75 0.132 0.099 0.16 6.006 - 100 0.000 0.000 0.000 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.209 0.063 0.06 Classification Grass 30 0.209 0.063 0.00 Classification Grass 30 0.209 0.063 0.00 Classification Grass 30 0.199 0.060 0.00 Classification Grase 175 0.083 0.062 0.12 Classification Grase 175 0.083 0.062 0.14 Classification Grase 175 0.083 0.062 0.14 Classification Grase 175 0.083 0.062 0.14 Classification Gravel 75 0.083 0.062 0.14 Classification Gravel 75 0.083 0.062 0.14 Classification Gravel 75 0.096 0.072 0.07 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 10.000 Classification Road 100 0.099 0.	2.000						0.209
Classification Roof 100 0.254 0.254 0.55 6.001 Classification Grass 30 0.127 0.038 0.03 Classification Gravel 75 0.041 0.031 0.00 6.002 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.084 0.084 0.11 Classification Roof 100 0.069 0.069 0.22 6.003 Classification Roof 100 0.100 0.100 0.100 Classification Roof 100 0.072 0.072 0.17 6.004 Classification Gravel 75 0.045 0.034 0.19 6.005 Classification Gravel 75 0.045 0.034 0.19 6.005 Classification Gravel 75 0.045 0.034 0.19 6.006 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.132 0.099 0.10 6.006 - 100 0.000 0.000 0.000 6.007 - 100 0.000 0.000 0.000 6.000 Classification Grass 30 0.209 0.663 0.00 Classification Grass 30 0.209 0.063 0.00 Classification Grass 30 0.199 0.00 Classification Grass 30 0.199 0.00 Classification Grass 30 0.199 0.00 Classification Grass 30 0.174 0.052 0.03 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.14 Classification Gravel 75 0.083 0.062 0.14 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 0.000 Classification Gravel 75 0.096 0.072 0.07 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 0.000 Classification Road 100 0.099 0.099 0.17 0							0.267
6.001 Classification Grass 30 0.127 0.038 0.03 Classification Gravel 75 0.041 0.031 0.04 6.002 Classification Gravel 75 0.045 0.034 0.03 Classification Gravel 75 0.045 0.034 0.01 Classification Grass 30 0.073 0.022 0.14 Classification Grass 30 0.073 0.022 0.14 Classification Grass 30 0.072 0.072 0.17 6.003 Classification Road 100 0.100 0.100 0.100 Classification Road 100 0.122 0.122 0.12 6.004 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.132 0.099 0.14 6.005 Classification Grass 30 0.209 0.163 6.006 - - 100 0.000 0.000							0.521
Classification Gravel 75 0.041 0.031 0.00 6.002 Classification Gravel 75 0.045 0.034 0.03 Classification Road 100 0.084 0.084 0.12 Classification Grass 30 0.073 0.022 0.14 Classification Roof 100 0.069 0.069 0.22 6.003 Classification Road 100 0.100 0.100 0.100 Classification Road 100 0.102 0.102 0.172 Classification Gravel 75 0.045 0.034 0.19 6.005 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.121 0.091 0.09 Classification Road 100 0.063 0.063 0.063 Classification Gravel 75 0.132 0.099 0.14 6.006 100 0.000 0.000 0.000 6.007 100 0.000 0.000 0.000 6.007 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.209 0.063 0.063 0.006 Classification Grass 30 0.199 0.060 0.000 Classification Grass 30 0.199 0.060 0.000 Classification Road 100 0.065 0.065 0.12 Classification Grass 30 0.199 0.060 0.000 Classification Grass 30 0.199 0.060 0.000 8.002 100 0.000 0.000 0.000 0.000 9.000 Classification Grass 30 0.199 0.060 0.000 Classification Grass 30 0.174 0.052 0.052 Classification Gravel 75 0.083 0.062 0.12 Classification Gravel 75 0.083 0.062 0.12 Classification Gravel 75 0.083 0.062 0.12 Classification Gravel 75 0.096 0.072 0.07 Classification Gravel 75 0.096 0.072 0.07 10.000 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 10.000 Classification Road 100 0.0266 0.266 0.266	6 001						0.038
6.002 Classification Gravel 75 0.045 0.034 0.034 Classification Road 100 0.084 0.084 0.13 Classification Grass 30 0.073 0.022 0.14 Classification Roof 100 0.069 0.022 0.14 Classification Roof 100 0.069 0.022 0.14 Classification Roof 100 0.100 0.100 0.100 Classification Road 100 0.072 0.072 0.12 6.004 Classification Gravel 75 0.045 0.034 0.19 classification Gravel 75 0.045 0.034 0.19 classification Gravel 75 0.121 0.091 0.09 classification Road 100 0.063 0.063 0.06 classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 classifica	0.001						
Classification Road 100 0.084 0.084 0.11 Classification Grass 30 0.073 0.022 0.14 Classification Roof 100 0.069 0.021 0.16 6.003 Classification Roof 100 0.100 0.100 0.10 Classification Roof 100 0.072 0.072 0.17 6.004 Classification Road 100 0.122 0.122 0.12 Classification Gravel 75 0.045 0.034 0.19 6.005 Classification Gravel 75 0.121 0.091 0.06 7.000 Classification Road 100 0.063 0.063 0.06 6.006 - - 100 0.000 0.000 0.00 6.000 Classification Grass 30 0.209 0.063 0.063 6.001 Classification Grass 30 0.209	6 002						
Classification Grass 30 0.073 0.022 0.14 Classification Roof 100 0.069 0.069 0.23 6.003 Classification Road 100 0.100 0.100 0.10 Classification Roof 100 0.072 0.072 0.17 6.004 Classification Gravel 75 0.045 0.034 0.13 6.005 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.121 0.091 0.09 Classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.199 0.066	0.002						
Classification Roof 100 0.069 0.22 6.003 Classification Road 100 0.100 0.100 0.100 Classification Roof 100 0.072 0.072 0.17 6.004 Classification Road 100 0.122 0.122 0.12 Classification Gravel 75 0.045 0.034 0.13 6.005 Classification Gravel 75 0.121 0.091 0.09 Classification Road 100 0.063 0.063 0.063 7.000 Classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.299 0.063 0.043 6.006 - - 100 0.000 0.000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
6.003 Classification Road 100 0.100 0.100 0.100 classification Roof 100 0.072 0.072 0.17 6.004 Classification Road 100 0.122 0.122 0.12 classification Gravel 75 0.045 0.034 0.19 6.005 Classification Gravel 75 0.121 0.091 0.09 classification Road 100 0.052 0.052 0.14 7.000 Classification Road 100 0.063 0.063 0.06 classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 6.006 - - 100 0.000 0.000 6.006 - - 100 0.000 0.000 6.007 - - 100 0.000 0.000 8.000 Classification Grass 30 0.199 0.066 classification Road </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Classification Roof 100 0.072 0.072 0.17 6.004 Classification Road 100 0.122 0.122 0.12 Classification Gravel 75 0.045 0.034 0.13 6.005 Classification Gravel 75 0.121 0.091 0.09 Classification Road 100 0.052 0.052 0.14 7.000 Classification Road 100 0.063 0.063 0.06 Classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.065 0.12 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.066 0.12	6 003						
6.004 Classification Road 100 0.122 0.122 0.12 Classification Gravel 75 0.045 0.034 0.13 6.005 Classification Gravel 75 0.121 0.091 0.09 Classification Road 100 0.052 0.052 0.14 7.000 Classification Road 100 0.063 0.063 0.06 Classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 6.001 - - 100 0.000 0.000 0.000 6.002 - - 100 0.000 0.000 0.000 8.001 Classification Grass 30 0.199 0.060 0.06 Classification Road 100 0.065 0.065 0.12 Classification Grass 30 0.174 0.052	0.005						
Classification Gravel 75 0.045 0.034 0.15 6.005 Classification Gravel 75 0.121 0.091 0.035 7.000 Classification Road 100 0.052 0.052 0.14 7.000 Classification Road 100 0.063 0.063 0.063 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 0.121 O.000 0.000 0.000 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.199 0.066 0.12 0.108 Classification Road 100 0.000 0.000 0.000 9.000 Classification	6 004						
6.005 Classification Gravel 75 0.121 0.091 0.092 7.000 Classification Road 100 0.052 0.052 0.14 7.000 Classification Road 100 0.063 0.063 0.063 0.006 - - 100 0.000 0.000 0.000 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 0.121 O.001 0.000 0.000 0.000 0.000 0.000 8.001 Classification Grass 30 0.199 0.060 0.065 0.122 - - 100 0.000 0.000 0.000 9.002 - - 100 0.000 0.000 0.000 9.001 - - 100 0.066 0.112 0.012 0.003 Classification Gr	0.004						
Classification Road 100 0.052 0.052 0.14 7.000 Classification Road 100 0.063 0.063 0.063 Classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.199 0.060 0.063 Classification Grass 30 0.199 0.060 0.063 Classification Road 100 0.065 0.012 0.02 8.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03	C 00E						
7.000 Classification Road 100 0.063 0.063 0.063 Classification Gravel 75 0.132 0.099 0.163 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.209 0.063 0.060 Classification Grass 30 0.199 0.060 0.060 Classification Grass 30 0.199 0.060 0.062 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.066 0.066 0.12 Stop - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Roaf 100 0.198 0.198 0.37 <td>0.005</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.005						
Classification Gravel 75 0.132 0.099 0.16 6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.209 0.063 0.063 Classification Grass 30 0.199 0.060 0.063 Classification Grass 30 0.199 0.060 0.063 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.065 0.065 0.12 8.002 - - 100 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 -	7 000						
6.006 - - 100 0.000 0.000 0.000 6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 Classification Road 100 0.073 0.073 0.13 8.001 Classification Grass 30 0.199 0.060 0.06 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.090 0.090 0.22 8.002 - - 100 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07	1.000						
6.007 - - 100 0.000 0.000 0.000 8.000 Classification Grass 30 0.209 0.063 0.063 Classification Road 100 0.073 0.073 0.13 8.001 Classification Grass 30 0.199 0.060 0.06 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.090 0.090 0.22 8.002 - - 100 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07	6 000	CIASSIIICATION					
8.000 Classification Grass 30 0.209 0.063 0.063 Classification Road 100 0.073 0.073 0.13 8.001 Classification Grass 30 0.199 0.060 0.06 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.090 0.090 0.22 Classification Road 100 0.000 0.000 0.000 9.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.18 Classification Gravel 75 0.083 0.062 0.18 9.001 - - 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>		-					
Classification Road 100 0.073 0.073 0.13 8.001 Classification Grass 30 0.199 0.060 0.06 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.090 0.090 0.22 Classification Road 100 0.000 0.000 0.000 9.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.18 Classification Gravel 75 0.083 0.062 0.18 9.001 - - 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07		- Cleasificati					
8.001 Classification Grass 30 0.199 0.060 0.060 Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.090 0.090 0.22 8.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Grass 30 0.174 0.052 0.03 Classification Gravel 75 0.083 0.062 0.14 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 0.000 Classification Road 100 0.266 0.266	8.000						0.063
Classification Road 100 0.065 0.065 0.12 Classification Road 100 0.090 0.090 0.22 8.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Road 100 0.066 0.066 0.11 Classification Road 100 0.066 0.062 0.13 Classification Gravel 75 0.083 0.062 0.14 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 0.000 Classification Road 100 0.266 0.266 0.266	0 001						0.136
Classification Road 100 0.090 0.090 0.22 8.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.00 Classification Road 100 0.066 0.066 0.17 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.00 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 10.000 Classification Road 100 0.266 0.266 0.26	8.001						0.060
8.002 - - 100 0.000 0.000 0.000 9.000 Classification Grass 30 0.174 0.052 0.03 Classification Road 100 0.066 0.066 0.17 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 0.000 Classification Road 100 0.266 0.266							0.125
9.000 Classification Grass 30 0.174 0.052 0.03 Classification Road 100 0.066 0.066 0.12 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 10.000 Classification Roof 100 0.266 0.266	0 000	Classification	Road				0.215
Classification Road 100 0.066 0.066 0.12 Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.37 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 0.000 Classification Roof 100 0.266 0.266		-	-				0.000
Classification Gravel 75 0.083 0.062 0.18 Classification Roof 100 0.198 0.198 0.33 9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 10.000 Classification Roof 100 0.266 0.266 0.266	9.000						0.052
Classification Roof 100 0.198 0.198 0.3' 9.001 - - 100 0.000 0.000 0.00 8.003 Classification Gravel 75 0.096 0.072 0.0' Classification Road 100 0.099 0.099 0.1' 10.000 Classification Roof 100 0.266 0.266 0.24							0.119
9.001 - - 100 0.000 0.000 0.000 8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.099 0.17 10.000 Classification Roof 100 0.266 0.266							0.181
8.003 Classification Gravel 75 0.096 0.072 0.07 Classification Road 100 0.099 0.17 10.000 Classification Roof 100 0.266 0.266		Classification					0.379
Classification Road 100 0.099 0.099 0.1 10.000 Classification Roof 100 0.266 0.266 0.26		-					0.000
10.000 Classification Roof 100 0.266 0.266 0.26	8.003						0.072
							0.171
							0.266
10.001 Classification Roof 100 0.209 0.209 0.20	10.001	Classification	Roof	100	0.209	0.209	0.209

Clifton Scannell Emerson Associa	Page 13	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L'
County Dublin		Micco
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
8.004	Classification	Road	100	0.211	0.211	0.211
8.005	-	_	100	0.000	0.000	0.000
8.006	-	-	100	0.000	0.000	0.000
11.000	Classification	Road	100	0.036	0.036	0.036
	Classification	Grass	30	0.042	0.012	0.048
11.001	Classification	Road	100	0.040	0.040	0.040
	Classification	Grass	30	0.179	0.054	0.094
	Classification	Gravel	75	0.173	0.130	0.224
11.002	Classification	Grass	30	0.268	0.080	0.080
	Classification	Road	100	0.047	0.047	0.128
	Classification	Gravel	75	0.192	0.144	0.272
11.003	-	-	100	0.000	0.000	0.000
12.000	Classification	Grass	30	0.207	0.062	0.062
	Classification	Road	100	0.041	0.041	0.104
12.001	-	-	100	0.000	0.000	0.000
11.004	Classification	Road	100	0.034	0.034	0.034
	Classification	Gravel	75	0.071	0.053	0.087
13.000	Classification	Gravel	75	0.166	0.124	0.124
	Classification	Road	100	0.069	0.069	0.193
	Classification	Gravel	75	0.114	0.085	0.278
	Classification	Roof	100	0.240	0.240	0.519
13.001	Classification	Gravel	75	0.098	0.074	0.074
	Classification	Road	100	0.065	0.065	0.139
	Classification	Roof	100	0.219	0.219	0.358
11.005	Classification	Road	100	0.090	0.090	0.090
	Classification	Gravel	75	0.172	0.129	0.220
	Classification	Roof	100	0.208	0.208	0.208
	Classification	Roof	100	0.217	0.217	0.217
11.006	Classification	Road	100	0.038	0.038	0.038
	Classification		75	0.028	0.021	0.059
15.000	Classification		75	0.148	0.111	0.111
	Classification	Road	100	0.055	0.055	0.167
15.001	Classification		75	0.163	0.123	0.123
	Classification	Road	100	0.065	0.065	0.188
	Classification	Road	100	0.042	0.042	0.042
	Classification	Road	100	0.116	0.116	0.116
11.008	-	-	100	0.000	0.000	0.000
11.009	-	-	100	0.000	0.000	0.000
3.008	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				8.736	6.888	6.888

Clifton Scannell Emerson Associa	Page 14	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	·

Network Classifications for Storm

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре
		(11111)	(111)	(111)		(11111)	(11111)	(111)	
S3.000	SWMH-20.1	300	1.055	1.177	Unclassified	1200	0	1.055	Unclassified
S3.001	SWMH-20.2	300	1.177	1.361	Unclassified	1200	0	1.177	Unclassified
S4.000	SWMH-21.1	300	1.397	1.633	Unclassified	1200	0	1.397	Unclassified
S5.000	SWMH-22.1	300	1.635	1.670	Unclassified	1200	0	1.670	Unclassified
	SWMH-21.2	300	1.302		Unclassified		0		Unclassified
	SWMH-21.3	300	1.209		Unclassified		0		Unclassified
	SWMH-20.3	450	1.212		Unclassified		0		Unclassified
	SWMH-20.4	450	1.212		Unclassified		0		Unclassified
	SWMH-20.5	450	1.395		Unclassified		0		Unclassified
	SWMH-20.6	450	1.590		Unclassified		0		Unclassified
	SWMH-20.7	450	1.675		Unclassified		0		Unclassified
	SWMH-20.8	450	1.200		Unclassified		0		Unclassified
	SWMH-10.1	450	1.061		Unclassified		0		Unclassified
	SWMH-10.2	450	1.217		Unclassified		0		Unclassified
	SWMH-10.3	450	1.191		Unclassified		0		Unclassified
	SWMH-10.4	450	1.191		Unclassified		0		Unclassified
	SWMH-10.5	525	1.251		Unclassified Unclassified		0		Unclassified
	SWMH-10.6 SWMH-11.1	525	1.147		Unclassified		0		Unclassified Unclassified
	SWMH-11.1 SWMH-10.7	375 525	1.011 1.147		Unclassified		0		Unclassified
	SWMH-10.7 SWMH-10.8	525	1.147		Unclassified		0		Unclassified
	SWMH-10.8 SWMH-30.1	300	1.123		Unclassified		0		Unclassified
	SWMH-30.1	375	1.400		Unclassified		0		Unclassified
	SWMH-30.3	375	1.522		Unclassified		0		Unclassified
	SWMH-31.1	375	0.675		Unclassified		0		Unclassified
	SWMH-31.2	375	0.962		Unclassified		0		Unclassified
	SWMH-30.4	450	1.576		Unclassified		0		Unclassified
	SWMH-32.1	450	1.167		Unclassified		0		Unclassified
	SWMH-32.2	450	1.318		Unclassified		0		Unclassified
S8.004	SWMH-30.5	600	1.323	1.838	Unclassified	1500	0	1.831	Unclassified
S8.005	SWMH-30.6	600	1.100	1.939	Unclassified	1500	0	1.323	Unclassified
S8.006	SWMH-30.7	600	1.050	1.960	Unclassified	1500	0	1.150	Unclassified
S11.000	SWMH-40.1	300	1.076	1.133	Unclassified	1200	0	1.076	Unclassified
S11.001	SWMH-40.2	375	0.864	1.133	Unclassified	1350	0	1.133	Unclassified
S11.002	SWMH-40.3	450	0.864	1.606	Unclassified	1350	0	0.864	Unclassified
S11.003	SWMH-40.4	450	0.970	1.722	Unclassified	1350	0	1.606	Unclassified
S12.000	SWMH-44.1	300	0.893	1.339	Unclassified	1200	0	0.893	Unclassified
S12.001	SWMH-44.2	300	0.966	1.713	Unclassified	1200	0	1.339	Unclassified
	SWMH-40.5	450	1.187		Unclassified		0		Unclassified
S13.000	SWMH-41.1	525	1.042	1.178	Unclassified	1500	0	1.070	Unclassified
S13.001	SWMH-41.2	525	1.178		Unclassified		0	1.178	Unclassified
S11.005	SWMH-40.6	600	0.987		Unclassified		0	1.462	Unclassified
	SWMH-42.1	375	1.144		Unclassified		0		Unclassified
	SWMH-42.2	375	1.234		Unclassified		0		Unclassified
	SWMH-40.7	600	0.629		Unclassified		0		Unclassified
	SWMH-43.1	375	0.750		Unclassified		0		Unclassified
	SWMH-43.2	375	0.753		Unclassified		0		Unclassified
	SWMH-43.3	375	0.693		Unclassified		0		Unclassified
SII.UU/	SWMH-40.8	750	0.958	1.510	Unclassified	ταυυ	0	1.510	Unclassified
			©1	982-2017	XP Solution	IS			

	Scannell							1	Page 15
Seefort	Lodge Ca	stled	awson	. Engine	node Clone	ee		[
Blackroo	ck			Surfac	e Watre Ne	etwork	: 1		L.
County I	Dublin								Micro
Date 05/	/09/2019 1	4:02		Design	ed by Zvor	nimir	Salki	С	
File Eng	gineNode_N	etwor	k_1.MDX	Checke	d by Conor	r Dohe	erty		Drainage
Micro Di	rainage			Networ	k 2017.1.2	2		I	
			_						
		<u>N</u>	<u>letwork C</u>	<u>lassific</u>	ations for	<u>s Stor</u>	<u>m</u>		
PN	USMH	Pipe	Min Cover	Max Cover	Ріре Туре	MH	МН	MH Ring	MH Type
	Name	Dia	Depth	Depth			Width	-	
		(mm)	(m)	(m)		(mm)	(mm)	(m)	
S11.008	SWMH-40.9	750	0.950	1.747	Unclassifie	ed 1800	0	1.069	Unclassifie
s11.009	SWMH-40.10		0.900		Unclassifie				Unclassifie
S3.008 S	WMH-OUTFALL	750	0.746	0.907	Unclassifie	ed 1800	0	0.900	Unclassifie
		Free	- Flowin	a Outfall	Details	for St	orm		
		1100		<u>g outrari</u>	Decuiio	101 00	<u>201111</u>		
		utfall			I. Level	Min	D,L	W	
	Pipe	e Numbe	er Name	(m)	(m) I.	Level (m)	(mm)	(mm)	
						(111)			
		s3.00	8 SWMH-	69.957	68.300	0.000	0	0	
			Simulat	ion Crit	eria for S	Storm			
			noff Coef:		Additional H				
			ion Factor art (mins)		MADD Fac			a Storage ffiecient	
					ow per Perso				
Manl	nole Headlos				1 1 1 1			me (mins)	
Fc	oul Sewage p	er hec	tare (l/s)	0.000	C	Dutput	Interv	al (mins)	1
	Numbe	r of Tr	unut Hydro	aranhs 0 N	Jumber of St	orage	Structi	ires 1	
				5 1	Number of Ti	2			
	Numb	er of (Offline Co	ntrols 0 N	Number of Re	al Time	e Contr	cols 0	
			<u>Synth</u>	<u>etic kali</u>	<u>nfall Deta</u>	115			
	Rain	nfall M	odel		FSR	Pr	ofile	Type Sumr	ner
	Return Peri	.od (ye	ars)		100	С	v (Sum	mer) 0.7	750
			-	land and I:				ter) 0.8	
		M5-60	(mm) io R		17.800 Storn 0.323	n Durat	ion (m	ins)	30
		Rat	10 K		0.323				

Clifton Scannell Emerson Ass	ociates				Page 16
Seefort Lodge Castledawson		ode Clone	e		
Blackrock	-	Watre Ne			4
County Dublin	Burrace	Macre Ne	CWOIN I		1 mm
Date 05/09/2019 14:02	Dociano	d by Zvon	imir Col	ri o	Micro
	_	-		KIC	Drainage
File EngineNode_Network_1.MD		by Conor 2017.1.2	Donerty		
Micro Drainage	Network	2017.1.2			
	ine Controls				
<u> Hydro-Brake® Optimum Manhole</u>	: SWMH-OUTFA	LL, DS/PN	: 53.008	, VOLUM	e (m³): /4.
	Unit Reference		16-2440-10		
	Design Head (m) sign Flow (l/s)			1.000 24.4	
20.	Flush-Flo		Cal	culated	
	Objective	e Minimise	upstream	storage	
	Applicatior			Surface	
	Sump Available Diameter (mm)			Yes 216	
т	Diameter (mm) nvert Level (m)			216 68.350	
Minimum Outlet Pipe				300	
Suggested Manhole				1500	
Contro	ol Points	Head (m) 1	Flow (l/s)		
Design Poin	t (Calculated)	1.000	24.4		
	TT]]. TT]	0.359	24.3		
	Flush-Flo™				
The hydrological calculations hat Hydro-Brake® Optimum as specific	Kick-Flo® over Head Range ave been based ed. Should and	- on the Hea other type	of control	device d	other than a
The hydrological calculations ha Hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated	Kick-Flo® over Head Range ave been based ed. Should and d then these st	on the Hea other type corage rout	20.3 d/Discharg of control ing calcul	device o ations wi	other than a ill be
The hydrological calculations has Hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m)	Kick-Flo® over Head Range ave been based ed. Should and d then these st Flow (1/s) De	on the Hea other type corage rout	20.3 d/Discharg of control ing calcul	device o ations wi	other than a ill be Flow (1/s)
The hydrological calculations has Hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200	Kick-Flo® over Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6	on the Hea other type corage rout pth (m) Flo 3.000	20.3 d/Discharg of control ing calcul ow (1/s) [41.3]	device of ations with the second seco	ther than a the second
The hydrological calculations has Hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6	on the Hea other type corage rout pth (m) Flo 3.000 3.500	20.3 d/Discharg of control ing calcul ow (1/s) [41.3 44.5	device of ations with the second seco	ther than a ill be Flow (1/s) 62.3 64.4
The hydrological calculations has Hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000	20.3 d/Discharg of control ing calcul ow (1/s) [41.3 44.5 47.5]	device of ations with pepth (m) 7.000 7.500 8.000	ther than a ill be Flow (1/s) 62.3 64.4 66.5
The hydrological calculations has Hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3	on the Hea other type corage rout pth (m) Flo 3.000 3.500	20.3 d/Discharg of control ing calcul ow (1/s) [41.3 44.5	device of ations with the second seco	ther than a ill be Flow (1/s) 62.3 64.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum@ be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0	- on the Hea other type corage rout pth (m) Flo 3.000 3.500 4.000 4.500	20.3 d/Discharg of control ing calcul ow (1/s) [41.3 44.5 47.5 50.3	device of ations with pepth (m) 7.000 7.500 8.000 8.500	Flow (1/s) 62.3 64.4 66.5 68.5
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake® Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 24.3 1.800 0.500 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.500 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.500 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4
The hydrological calculations has hydro-Brake@ Optimum as specific Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) 0.100 7.3 1.200 0.200 21.2 1.400 0.300 24.2 1.600 0.400 23.9 2.000 0.600 23.2 2.200 0.800 21.9 2.400	Kick-Flo® wer Head Range ave been based ed. Should and d then these st Flow (1/s) De 26.6 28.6 30.5 32.3 34.0 35.6 37.1	on the Hea other type corage rout pth (m) Fl 3.000 3.500 4.000 4.500 5.000 5.500 6.000	20.3 d/Discharg of control ing calcul ow (1/s) E 41.3 44.5 47.5 50.3 52.9 55.4 57.8	device of ations with pepth (m) 7.000 7.500 8.000 8.500 9.000	Flow (1/s) 62.3 64.4 66.5 68.5 70.4

Clifton Scannell Emerson Associa	Page 17	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Tank or Pond Manhole: SWMH-OUTFALL, DS/PN: S3.008

Invert Level (m) 68.350

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000	6242.0	1.000	7593.0	1.650	8502.0
-------	--------	-------	--------	-------	--------

Clifton Scannell Emerson Associa	Page 18	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

Manhole Headloss for Storm

PN	US/MH Name	US/MH Headloss
S3.000	SWMH-20.1	0.500
S3.001	SWMH-20.2	0.500
S4.000	SWMH-21.1	0.500
S5.000	SWMH-22.1	0.500
S4.001	SWMH-21.2	0.500
S4.002	SWMH-21.3	0.500
s3.002	SWMH-20.3	0.500
s3.003	SWMH-20.4	0.500
S3.004	SWMH-20.5	0.500
S3.005	SWMH-20.6	0.500
S3.006	SWMH-20.7	0.500
S3.007	SWMH-20.8	0.500
S6.000	SWMH-10.1	0.500
S6.001	SWMH-10.2	0.500
S6.002	SWMH-10.3	0.500
S6.003	SWMH-10.4	0.500
S6.004	SWMH-10.5	0.500
S6.005	SWMH-10.6	0.500
S7.000	SWMH-11.1	0.500
S6.006	SWMH-10.7	0.500
S6.007	SWMH-10.8	0.500
S8.000	SWMH-30.1	0.500
S8.001	SWMH-30.2	0.500
S8.002	SWMH-30.3	0.500
S9.000	SWMH-31.1	0.500
S9.001	SWMH-31.2	0.500
S8.003	SWMH-30.4	0.500
S10.000	SWMH-32.1	0.500
S10.001	SWMH-32.2	0.500
S8.004	SWMH-30.5	0.500
S8.005	SWMH-30.6	0.500
S8.006	SWMH-30.7	0.500
S11.000	SWMH-40.1	0.500
S11.001	SWMH-40.2	0.500
S11.002	SWMH-40.3	0.500
S11.003	SWMH-40.4	0.500
S12.000	SWMH-44.1	0.500
S12.001	SWMH-44.2	0.500
S11.004	SWMH-40.5	0.500
S13.000	SWMH-41.1	0.500
S13.001	SWMH-41.2	0.500
S11.005	SWMH-40.6	0.500
S14.000	SWMH-42.1	0.500
S14.001	SWMH-42.2	0.500
S11.006	SWMH-40.7	0.500
S15.000	SWMH-43.1	0.500
S15.001	SWMH-43.2	0.500
S15.002	SWMH-43.3	0.500
S11.007 S11.008	SWMH-40.8	0.500 0.500
S11.008 S11.009	SWMH-40.9 SWMH-40.10	0.500
©1982-20	017 XP Sol	Lutions

Clifton Scannell Emerson Associa	tes	Page 19
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micco
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Dialitage
Micro Drainage	Network 2017.1.2	

Manhole Headloss for Storm

PN	US/MH Name	US/MH Headloss
S3.008	SWMH-OUTFALL	0.500

Clifton	Scannell	Emerson	Associa	ates			E	Page 20
Seefort	Lodge Ca	astledaws	son	Engin	enode Clonee	2	ſ	
Blackroc	k			Surfa	ce Watre Net	work 1		4
County D	ublin							Micco
Date 05/	09/2019	14:02		Desig	ned by Zvoni	mir Salk	10	MICLO
File Eng	ineNode 1	Network 1	.MDX	Check	ed by Conor	Doherty		Drainago
Micro Dr					rk 2017.1.2	2		
<u>5 year 1</u>	Return Pe	eriod Sum	mary of		<u>cal Results</u> Storm	by Maxim	um Level	(Rank 1)
	Hot ole Headlo ul Sewage Numbe Num	Hot Start Start Lev ss Coeff (per hectar er of Inpur mber of On.	Factor (mins) el (mm) Global) e (l/s) t Hydrogr line Cont line Cont	1.000 0 0.500 F 0.000 caphs 0 crols 1 crols 0	n Criteria Additional Fl MADD Fact low per Person Number of Stor Number of Time Number of Real .nfall Details	or * 10m³/ Inlet Co per Day (rage Struct 2/Area Diag	ha Storage effiecient l/per/day) cures 1 grams 0	2.000 0.800
		M5-60 (del ion Scot mm)	land and		Winter) 0.	750 840	
			Analy	sis Time	estep Fine In- tatus ON			
	Return 1		file(s) (mins) 1 (years)	sis Time DTS St	estep Fine In	summer a 360, 480,	us OFF and Winter	
	Return 1 C: US/MH	uration(s) Period(s) limate Cha	file(s) (mins) : (years) nge (%) Return (sis Time DTS St 15, 30, Climate	First (X)	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
PN	Return 1 C	uration(s) Period(s)	file(s) (mins) : (years) nge (%)	sis Time DTS St 15, 30, Climate	estep Fine In Catus ON 60, 120, 240,	ertia Stat Summer a 360, 480, 5	us OFF 960, 1440 5, 30, 100 0, 10, 10	
S3.000	Return 1 C: US/MH Name SWMH-20.1	uration(s) Period(s) limate Cha Storm 15 Winter	file(s) (mins) : (years) nge (%) Return (Period	sis Time DTS St 15, 30, Climate	First (X)	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
S3.000 S3.001	Return D C US/MH Name SWMH-20.1 SWMH-20.2	uration(s) Period(s) limate Cha Storm 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5	sis Time DTS St 15, 30, Climate Change +10% +10%	Estep Fine In Tatus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
S3.000 S3.001 S4.000	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1	uration(s) Period(s) limate Cha Storm 15 Winter 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5	sis Time DTS St 15, 30, Climate Change +10% +10% +10%	<pre>estep Fine In- tatus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
S3.000 S3.001 S4.000 S5.000	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1	Storm Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5	sis Time DTS St 15, 30, Climate Change +10% +10% +10% +10%	Estep Fine In- tatus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
S3.000 S3.001 S4.000 S5.000 S4.001	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1	Storm Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5	sis Time DTS St 15, 30, Climate Change +10% +10% +10%	<pre>estep Fine In- tatus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
S3.000 S3.001 S4.000 S5.000 S4.001 S4.002	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2	Storm Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5	sis Time DTS St 15, 30, Climate Change +10% +10% +10% +10% +10%	Estep Fine In- tatus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4	Storm Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In- tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-20.5	Storm Storm 15 Winter 15 Winter 30 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS st 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In- tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.6	Storm Storm 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS st 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In- tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005 \$3.006	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.6 SWMH-20.7	Storm Storm	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS st 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In- tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005 \$3.006 \$3.007	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.6	Storm Storm	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS st 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In- tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005 \$3.006 \$3.007 \$6.000	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8	Storm Storm 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS st 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In. Catus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005 \$3.006 \$3.007 \$6.000 \$6.001 \$6.002	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8 SWMH-20.8 SWMH-10.1 SWMH-10.2 SWMH-10.3	Storm Storm Storm 5 Winter 5 Winter 5 Winter 5 Winter 5 Winter 5 Winter 5 Winter 5 Winter 5 Winter 30 Winter 60 Summer 30 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS st 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	Estep Fine In. Catus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005 \$3.006 \$3.007 \$6.000 \$6.001 \$6.002 \$6.003	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8 SWMH-20.8 SWMH-10.1 SWMH-10.2 SWMH-10.3 SWMH-10.4	storm Storm Storm 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	sis Time DTS St DTS St 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Estep Fine In- tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$3.004 \$3.005 \$3.006 \$3.007 \$6.000 \$6.001 \$6.002 \$6.003 \$6.004	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8 SWMH-20.8 SWMH-10.1 SWMH-10.2 SWMH-10.3	storm Storm Storm 15 Winter 15 Winter 30 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	estep Fine In. catus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
<pre>S3.000 S3.001 S4.000 S5.000 S4.001 S4.002 S3.002 S3.003 S3.004 S3.005 S3.006 S3.007 S6.000 S6.001 S6.002 S6.003 S6.004 S6.005</pre>	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8 SWMH-20.8 SWMH-10.1 SWMH-10.2 SWMH-10.3 SWMH-10.5 SWMH-10.6	storm Storm Storm 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Winter 15 Winter 30 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	sis Time DTS St DTS St 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine In. catus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
<pre>S3.000 S3.001 S4.000 S5.000 S4.001 S4.002 S3.002 S3.003 S3.004 S3.005 S3.006 S3.007 S6.000 S6.001 S6.002 S6.001 S6.002 S6.003 S6.004 S6.005 S7.000</pre>	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8 SWMH-20.8 SWMH-10.1 SWMH-10.2 SWMH-10.3 SWMH-10.5 SWMH-10.6 SWMH-11.1	storm Storm Storm 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	sis Time DTS St DTS St 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine In. catus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	
<pre>S3.000 S3.001 S4.000 S5.000 S4.001 S4.002 S3.002 S3.003 S3.004 S3.005 S3.006 S3.007 S6.000 S6.001 S6.002 S6.003 S6.004 S6.005 S7.000 S6.006</pre>	Return 1 C: US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.5 SWMH-20.5 SWMH-20.6 SWMH-20.7 SWMH-20.8 SWMH-20.8 SWMH-10.1 SWMH-10.2 SWMH-10.3 SWMH-10.5 SWMH-10.6	storm Storm Storm 15 Winter 15 Winter	file(s) (mins) : (years) nge (%) Return (Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	sis Time DTS St DTS St 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine In. catus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15	Summer a 360, 480, 5 First (Y)	us OFF 960, 1440 5, 30, 100 0, 10, 10 First (Z)	

Clifton Scannell Emerson Associa	tes	Page 21
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u>Y</u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Digitigh
Micro Drainage	Network 2017.1.2	·

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)			Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
					-				
	SWMH-20.1		-0.063	0.000	0.92		55.4	OK	
	SWMH-20.2		-0.014	0.000	1.00		57.0	OK	
S4.000	SWMH-21.1	69.824	-0.176	0.000	0.12		6.4	OK	
S5.000	SWMH-22.1	69.885	-0.165	0.000	0.40		23.8	OK	
S4.001	SWMH-21.2	69.818	-0.114	0.000	0.62		35.8	OK	
S4.002	SWMH-21.3	69.766	-0.075	0.000	0.89		54.1	OK	
S3.002	SWMH-20.3	69.420	-0.070	0.000	0.95		121.4	OK	
S3.003	SWMH-20.4	69.343	-0.091	0.000	0.95		135.9	OK	
S3.004	SWMH-20.5	69.195	-0.056	0.000	0.84		120.1	OK	
S3.005	SWMH-20.6	69.055	0.000	0.000	0.92		123.0	OK	
S3.006	SWMH-20.7	68.970	0.000	0.000	1.35		105.9	OK	
S3.007	SWMH-20.8	68.726	-0.174	0.000	0.69		123.2	OK	
S6.000	SWMH-10.1	69.569	-0.148	0.000	0.70		100.0	OK	
S6.001	SWMH-10.2	69.478	-0.068	0.000	0.94		97.7	OK	
S6.002	SWMH-10.3	69.438	-0.071	0.000	0.91		123.8	OK	
S6.003	SWMH-10.4	69.370	-0.039	0.000	1.00		136.9	OK	
S6.004	SWMH-10.5	69.197	-0.101	0.000	0.68		141.0	OK	
S6.005	SWMH-10.6	69.128	-0.049	0.000	0.76		148.4	OK	
S7.000	SWMH-11.1	69.083	-0.217	0.000	0.37		34.4	OK	
S6.006	SWMH-10.7	69.053	0.000	0.000	1.02		117.1	OK	
S6.007	SWMH-10.8	69.003	0.028	0.000	1.03		149.4	SURCHARGED	

Clifton Sc	annell Emer	son As	sociat	es					Pag	re 22
Seefort Lo	dge Castle	edawson	•••	Engir	nenode	Clonee				
Blackrock				Surfa	ace Wa	tre Net	work 1		4	
County Dub	lin									- Cr
=		<u></u>		<u> </u>					— Mi	
	/2019 14:02			-		y Zvoni				ainaq
File Engin	eNode_Netwo	ork_1.M	DX	Check	ked by	Conor	Dohert	У		
Micro Drai	nage		1	Netwo	ork 20	17.1.2				
				a			1 16		7 (1)	
<u>5 year Re</u>	turn Period	<u>Summa</u> :	<u>ry of</u>		<u>ical R</u> Storm	<u>esults</u>	by Max	<u>kimum Le</u> r	vel (<u>Rank I)</u>
	US/MH					e Firs		First (Y		
PN	Name	Stor	m P€	eriod	Change	Surc	harge	Flood	Ovei	flow
S8.000	SWMH-30.1	15 Wi	nter	5	+109	\$ 100/15	Summer			
S8.001	SWMH-30.2			5		30/15				
S8.002	SWMH-30.3			5		30/15				
S9.000	SWMH-31.1			5	+109		Summer			
S9.001	SWMH-31.2			5	+109		Summer			
S8.003	SWMH-30.4			5	+10		Summer			
s10.000	SWMH-32.1			5	+10					
S10.001	SWMH-32.2			5		° 100/15	Summer			
S8.004	SWMH-30.5			5		30/15				
S8.005				5	+10		Summer			
							Summer			
S8.006	SWMH-30.7			5	+10					
S11.000	SWMH-40.1			5		8 100/15 20/15				
S11.001	SWMH-40.2			5		30/15				
S11.002	SWMH-40.3			5	+10		Summer			
S11.003				5	+109		Summer			
S12.000	SWMH-44.1			5	+109		Summer			
S12.001	SWMH-44.2			5	+109		Summer			
S11.004	SWMH-40.5			5	+109		Summer			
S13.000	SWMH-41.1			5	+109		Winter			
S13.001	SWMH-41.2			5	+109		Summer			
S11.005	SWMH-40.6	15 Wi	nter	5	+109		Summer			
S14.000	SWMH-42.1			5		\$ 100/15				
S14.001	SWMH-42.2	15 Wi	nter	5	+109	30/15	Summer			
S11.006	SWMH-40.7	60 Su	mmer	5	+109	8 30/15	Summer			
S15.000	SWMH-43.1	15 Wi	nter	5	+109	100/15	Winter			
S15.001	SWMH-43.2	15 Wi		5	+109	8 100/15	Summer			
S15.002	SWMH-43.3	15 Wi	nter	5	+109	8 100/15	Summer			
S11.007	SWMH-40.8	30 Wi	nter	5	+109	30/15	Summer			
S11.008	SWMH-40.9	30 Wi	nter	5	+109	≥ 100/15	Summer			
S11.009	SWMH-40.10	30 Wi	nter	5	+109	100/15	Summer			
S3.008	SWMH-OUTFALL	1440 Wi	nter	5	+109	00				
			Water	Surc	harged	Flooded			Pipe	
	US/MH C	verflow	Level	De	pth	Volume		Overflow		
PN	Name	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status
S8.000	SWMH-30.1		69.731		-0.154	0.000	0.44		26.7	OK
S8.001	SWMH-30.2		69.507		-0.156	0.000	0.61		61.2	OK
S8.002	SWMH-30.3		69.402		-0.082	0.000	0.85		60.1	OK
S9.000	SWMH-31.1		70.066		-0.109	0.000	0.80		75.9	OK
S9.001	SWMH-31.2		69.984		-0.054	0.000	1.00		69.7	OK
S8.003	SWMH-30.4		69.373		-0.077	0.000	0.97		145.3	OK
S10.000	SWMH-32.1		69.525		-0.247	0.000	0.37		52.3	OK
S10.001	SWMH-32.2		69.435		-0.197	0.000	0.59		83.5	OK
	SWMH-30.5		69.195		-0.065	0.000	0.77		218.1	OK
S8,004	S									
S8.004 S8.005	SWMH-30.6		69,120		0.000	0.000	1.27		208.9	
S8.004 S8.005 S8.006	SWMH-30.6 SWMH-30.7		69.120 68.894		0.000 -0.156	0.000 0.000	1.27 0.90		208.9 209.4	OK OK

Clifton Scannell Emerson Associa	tes	Page 23
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Digitigh
Micro Drainage	Network 2017.1.2	

PN	US/MH Name	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status
S11.000	SWMH-40.1		69.777	-0.207	0.000	0.19		10.0	OK
S11.001	SWMH-40.2		69.719	-0.183	0.000	0.48		46.9	OK
S11.002	SWMH-40.3		69.569	-0.142	0.000	0.59		82.5	OK
S11.003	SWMH-40.4		69.528	-0.041	0.000	0.84		70.9	OK
S12.000	SWMH-44.1		69.528	-0.172	0.000	0.37		21.5	OK
S12.001	SWMH-44.2		69.512	-0.080	0.000	0.31		15.8	OK
S11.004	SWMH-40.5		69.507	-0.041	0.000	0.68		89.4	OK
S13.000	SWMH-41.1		69.581	-0.239	0.000	0.49		98.0	OK
S13.001	SWMH-41.2		69.516	-0.137	0.000	0.65		129.6	OK
S11.005	SWMH-40.6		69.466	-0.012	0.000	0.83		211.8	OK
S14.000	SWMH-42.1		69.558	-0.197	0.000	0.41		40.2	OK
S14.001	SWMH-42.2		69.433	-0.122	0.000	0.71		68.8	OK
S11.006	SWMH-40.7		69.355	0.000	0.000	1.58		221.7	OK
S15.000	SWMH-43.1		69.625	-0.220	0.000	0.34		33.6	OK
S15.001	SWMH-43.2		69.533	-0.154	0.000	0.62		61.8	OK
S15.002	SWMH-43.3		69.355	-0.149	0.000	0.66		65.3	OK
S11.007	SWMH-40.8		69.224	-0.106	0.000	0.87		323.9	OK
S11.008	SWMH-40.9		69.111	-0.160	0.000	1.15		322.9	OK
S11.009	SWMH-40.10		68.908	-0.292	0.000	0.69		323.2	OK
S3.008	SWMH-OUTFALL		68.672	-0.428	0.000	0.07		24.0	OK

	US/MH	Level	
PN	Name	Exceeded	
S8.000	SWMH-30.1		
s8.000 s8.001	SWMH-30.2		
\$8.001 \$8.002	SWMH-30.2 SWMH-30.3		
S9.000	SWMH-31.1		
\$9.001	SWMH-31.2		
S8.003	SWMH-30.4		
S10.000	SWMH-32.1		
S10.001	SWMH-32.2		
S8.004	SWMH-30.5		
S8.005	SWMH-30.6		
S8.006	SWMH-30.7		
S11.000	SWMH-40.1		
S11.001	SWMH-40.2		
S11.002	SWMH-40.3		
S11.003	SWMH-40.4		
S12.000	SWMH-44.1		
\$12.001	SWMH-44.2		
S11.004	SWMH-40.5		
S11.001 S13.000	SWMH-41.1		
\$13.000 \$13.001	SWMH-41.2		
\$13.001 \$11.005	SWMH-41.2 SWMH-40.6		
S14.000	SWMH-42.1		
©1982-2	017 XP Sol	utions	

Clifton Scannell Emerson Associa	tes	Page 24
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u>Y</u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Diamatje
Micro Drainage	Network 2017.1.2	

	US/MH	Level
PN	Name	Exceeded
S14.001	SWMH-42.2	
S11.001	SWMH-40.7	
S15.000	SWMH-43.1	
S15.001	SWMH-43.2	
S15.002	SWMH-43.3	
S11.007	SWMH-40.8	
S11.008	SWMH-40.9	
S11.009	SWMH-40.10	
S3.008	SWMH-OUTFALL	

Clifton Scannel		ASSUCIA	lles			L L	age 25
Seefort Lodge (Castledaws	on	Engine	enode Clonee		[
Blackrock			Surfac	e Watre Net	work 1		L.
County Dublin							Micco
Date 05/09/2019	14:02		Design	ed by Zvonir	nir Salki	C	MICIO
File EngineNode	Network 1	.MDX	Checke	d by Conor 1	Doherty		Drainag
Aicro Drainage			Networ	k 2017.1.2			
30 year Return	Period Sum	mary o:	<u>f Criti</u> for S		by Maxim	<u>um Level</u>	<u>(Rank 1</u>
Hc Manhole Headl Foul Sewage Numl N ⁻	Hot Start Dot Start Leve Loss Coeff (G e per hectare ber of Input umber of Onl.	Factor (mins) el (mm) Elobal) e (l/s) Hydrogr ine Cont	1.000 0 0.500 Fl 0.000 aphs 0 M rols 1 M	<u>Criteria</u> Additional Flo MADD Facto ow per Person Number of Stora Number of Time, Number of Real	r * 10m³/h Inlet Coe per Day (l age Structu /Area Diagu	a Storage ffiecient /per/day) ures 1 rams 0	2.000 0.800
NU	Rainfall Mod	Synthe		nfall Details	atio R 0.3		
		on Scot	land and	FSR R Ireland Cv (S 17.800 Cv (W	ummer) 0.7	50	
Mar	gin for Floc	d Risk W	Varning	(mm) 300.0	DVD Ctatu	S OFF	
		Analys	sis Times	step Fine Ine atus ON			
Return		ile(s) (mins) 1 years)	sis Times DTS Sta	step Fine Ine	rtia Statu Summer an 360, 480, 9 5,	s OFF nd Winter	
Return	Duration(s) Period(s) (ile(s) (mins) 1 years) ge (%)	sis Times DTS Sta	step Fine Ine atus ON	Summer an 360, 480, 9 5, 10	nd Winter 960, 1440 , 30, 100 0, 10, 10) Overflow
Return	Duration(s) Period(s) (ile(s) (mins) 1 years) ge (%) Return	sis Times DTS Sta	step Fine Ine atus ON 50, 120, 240, 3	Summer an 360, 480, 9 5, 10	nd Winter 960, 1440 , 30, 100 0, 10, 10	-
Return US/MH	Duration(s) Period(s) (Climate Chan	ile(s) (mins) 1 years) ge (%) Return	DTS Sta DTS Sta .5, 30, 6 Climate	step Fine Ine atus ON 50, 120, 240, 3 First (X)	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name	Duration(s) Period(s) (Climate Chan Storm	ile(s) (mins) 1 years) ge (%) Return Period	DTS Sta DTS Sta .5, 30, 6 Climate Change	step Fine Ine atus ON 50, 120, 240, 3 First (X) Surcharge 30/15 Summer 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter	ile(s) (mins) 1 years) ge (%) Return Period 30 30 30	<pre>sis Times DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-22.1	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period</pre>	<pre>sis Times DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10%</pre>	<pre>step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 120, 100, 100, 100, 100, 100, 10</pre>	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-22.1 S4.001 SWMH-21.2	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period</pre>	Climate Change +10% +10% +10% +10%	<pre>step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 100, 100, 100, 100, 100, 100, 10</pre>	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-22.1	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period</pre>	<pre>sis Times DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10%</pre>	<pre>step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 120, 100, 100, 100, 100, 100, 10</pre>	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period</pre>	Climate Change +10% +10% +10% +10% +10%	<pre>step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 50, 120, 100, 100, 100, 100, 100, 100, 10</pre>	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$3.001 SWMH-21.1 \$3.002 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.4 \$3.004 SWMH-20.5	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 120, 100, 100, 100, 100, 100, 10	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.6	Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>Sis Times DTS Sta DTS Sta DTS Sta Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 120, 240, 3 50, 120, 120, 120, 120, 120, 120, 120, 12	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.6 S3.006 SWMH-20.7	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 120, 240, 3 50, 120, 120, 120, 120, 120, 120, 120, 12	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.2 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.4 \$3.004 SWMH-20.5 \$3.005 SWMH-20.6 \$3.006 SWMH-20.7 \$3.007 SWMH-20.8	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 1440 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
Return US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.7	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 120, 240, 3 50, 120, 120, 120, 120, 120, 120, 120, 12	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.2 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.4 \$3.004 SWMH-20.5 \$3.005 SWMH-20.6 \$3.006 SWMH-20.7 \$3.007 SWMH-20.8 \$6.000 SWMH-10.1	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 1440 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.2 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.4 \$3.004 SWMH-20.5 \$3.005 SWMH-20.6 \$3.006 SWMH-20.7 \$3.007 SWMH-20.8 \$6.000 SWMH-10.1 \$6.001 SWMH-10.2	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 1440 Winter 15 Winter 15 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Surcharge 30/15 Surcharge 30/15 Surcharge 30/15 Summer 30/15	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.3 \$3.004 SWMH-20.4 \$3.005 SWMH-20.5 \$3.006 SWMH-20.5 \$3.007 SWMH-20.6 \$3.006 SWMH-20.7 \$3.007 SWMH-20.8 \$6.000 SWMH-10.1 \$6.001 SWMH-10.1 \$6.002 SWMH-10.3 \$6.003 SWMH-10.4 \$6.004 SWMH-10.5	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 1440 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta .5, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Surcharge 30/15 30/15 Surcharge 30/15 30/15 Summer 30/15	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.3 \$3.004 SWMH-20.4 \$3.005 SWMH-20.5 \$3.006 SWMH-20.6 \$3.007 SWMH-20.8 \$6.000 SWMH-10.1 \$6.001 SWMH-10.2 \$6.002 SWMH-10.4 \$6.003 SWMH-10.5 \$6.004 SWMH-10.6	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 1440 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.4 \$3.004 SWMH-20.5 \$3.005 SWMH-20.6 \$3.006 SWMH-20.7 \$3.007 SWMH-20.8 \$6.000 SWMH-10.1 \$6.001 SWMH-10.2 \$6.002 SWMH-10.1 \$6.003 SWMH-10.4 \$6.004 SWMH-10.5 \$6.005 SWMH-10.6 \$7.000 SWMH-11.1	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 1440 Winter 15 Winter 15 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Surcharge 30/15 30/15 Surcharge 30/15 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-
US/MH PN Name \$3.000 SWMH-20.1 \$3.001 SWMH-20.2 \$4.000 SWMH-20.2 \$4.000 SWMH-21.1 \$5.000 SWMH-21.1 \$5.000 SWMH-21.1 \$4.001 SWMH-21.2 \$4.002 SWMH-21.3 \$3.002 SWMH-20.3 \$3.003 SWMH-20.3 \$3.004 SWMH-20.4 \$3.005 SWMH-20.5 \$3.006 SWMH-20.6 \$3.007 SWMH-20.8 \$6.000 SWMH-10.1 \$6.001 SWMH-10.2 \$6.002 SWMH-10.4 \$6.003 SWMH-10.5 \$6.004 SWMH-10.6	Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 1440 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	<pre>ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30</pre>	<pre>sis Times DTS Sta DTS Sta DTS Sta Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	Summer an 360, 480, 9 5, 10 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z	-

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micro			
Date 05/09/2019 14:02	Designed by Zvonimir Salkic				
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage			
Micro Drainage	Network 2017.1.2	·			

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S3.000	SWMH-20.1 SWMH-20.2		0.311 0.256	0.000	1.20 1.44			SURCHARGED SURCHARGED	
	SWMH-20.2 SWMH-21.1		0.236	0.000	0.15			SURCHARGED	
	SWMH-22.1		0.028	0.000	0.55			SURCHARGED	
	SWMH-21.2		0.105	0.000	0.86			SURCHARGED	
	SWMH-21.3 SWMH-20.3		0.133 0.196	0.000	1.21 1.26			SURCHARGED SURCHARGED	
	SWMH-20.4		0.179	0.000	1.21			SURCHARGED	
S3.004	SWMH-20.5	69.378	0.128	0.000	1.16		166.3	SURCHARGED	
	SWMH-20.6		0.063	0.000	1.25			SURCHARGED	
	SWMH-20.7		0.013	0.000	2.14			SURCHARGED	
S3.007	SWMH-20.8 SWMH-10.1		-0.095	0.000	0.10 0.94		18.5	OK SURCHARGED	
	SWMH-10.1 SWMH-10.2		0.223	0.000	1.41			SURCHARGED	
	SWMH-10.3		0.258	0.000	1.31			SURCHARGED	
S6.003	SWMH-10.4	69.646	0.237	0.000	1.32		181.9	SURCHARGED	
	SWMH-10.5		0.189	0.000	0.95		196.9	SURCHARGED	
	SWMH-10.6		0.185	0.000	1.06			SURCHARGED	
	SWMH-11.1		-0.057	0.000	0.42		39.1	OK	
S6.006 S6.007	SWMH-10.7 SWMH-10.8		0.175 0.191	0.000	1.96 1.49			SURCHARGED SURCHARGED	
			0.101	2.000					

	annell En								Page 27
Seefort Lo	dge Cas	tledaws	on	Enginer					
lackrock	Surface Watre Network 1								
ounty Dub	lin								
	/2019 14	:02		Designe	d by	Zvor	imir Sa	alkic	Micro
'ile Engin	-	Designed by Zvonimir Salkic Checked by Conor Doherty							
	_	cwork_1	• PIDA	Network	-			- Y	
licro Drai	nage			Network	201	/.1.2			
<u>30 year Re</u>	eturn Per	iod Sum	<u>mary o</u>	<u>f Critic</u> <u>for St</u>		<u>esult</u>	s by Ma	uximum Le	vel (Rank 1
	US/MH			Return Cl	imate	Fir	st (X)	First (Y)	First (Z)
PN	Name	St	corm	Period Cł	nange	Sur	charge	Flood	Overflow
S8.000	SWMH-30) 1 15	Winter	30	+1∩≥	100/1	5 Summer		
S8.000	SWMH-30 SWMH-30		Winter	30	+10%		5 Summer		
S8.002	SWMH-30		Winter	30	+10%	/	5 Summer		
S9.000	SWMH-31		Winter	30	+10%		5 Summer		
S9.001	SWMH-31		Winter	30	+10%		5 Summer		
S8.003	SWMH-30		Winter	30	+10%		5 Summer		
S10.000	SWMH-32		Winter	30	+10%				
S10.001	SWMH-32	2.2 15	Winter	30	+10%	100/1	5 Summer		
S8.004	SWMH-30	0.5 15	Winter	30	+10%	30/1	5 Summer		
S8.005	SWMH-30	0.6 15	Winter	30	+10%	30/1	5 Summer		
S8.006	SWMH-30).7 15	Winter	30	+10%	30/1	5 Summer		
S11.000	SWMH-40	0.1 15	Winter	30	+10%	100/1	5 Summer		
S11.001	SWMH-40	0.2 15	Winter	30	+10%	30/1	5 Winter		
S11.002	SWMH-40	0.3 15	Winter	30	+10%	30/1	5 Summer		
S11.003	SWMH-40	0.4 15	Winter	30	+10%	30/1	5 Summer		
S12.000	SWMH-44	4.1 15	Winter	30	+10%	30/1	5 Summer		
S12.001	SWMH-44		Winter	30	+10%		5 Summer		
S11.004	SWMH-4(Winter	30	+10%		5 Summer		
S13.000	SWMH-41		Winter	30	+10%		5 Winter		
S13.001	SWMH-41		Winter	30	+10%		5 Summer		
S11.005	SWMH-40		Winter	30	+10%		5 Summer		
S14.000	SWMH-42		Winter	30			5 Summer		
S14.001	SWMH-42		Winter Winter	30	+10%		5 Summer		
S11.006	SWMH-40			30	+10%		5 Summer 5 Winter		
S15.000 S15.001	SWMH-43 SWMH-43		Winter Winter	30 30			5 Summer		
S15.001	SWMH-43		Winter	30			5 Summer		
S13.002 S11.007	SWMH-4		Winter	30			5 Summer		
S11.007	SWMH-40		Winter	30			5 Summer		
S11.009	SWMH-40		Winter	30			5 Summer		
S3.008	SWMH-OUTF2	ALL 1440	Winter	30	+10%				
			Water	Surcharge	d Flo	oded		Pi	pe
	US/MH	Overflow		Depth			Flow / O	verflow Fl	-
PN	Name	Act.	(m)	(m)	(r	n³)	Cap.	(l/s) (l	/s) Status
S8.000	SWMH-30.1		69.868	-0.01	7 0	.000	0.63	3	8.6 C
	SWMH-30.1 SWMH-30.2		69.807	0.14		.000	0.83		1.5 SURCHARGE
	SWMH-30.2 SWMH-30.3		69.708	0.14		.000	1.09		7.0 SURCHARGE
	SWMH-30.3		70.242	0.22		.000	1.13		8.0 SURCHARGE
	SWMH-31.2		70.054	0.00		.000	1.13		7.2 SURCHARGE
S9.001			69.673	0.22		.000	1.33		0.5 SURCHARGE
	SWMH-30.4			· ·	- 0			20	
s8.003	SWMH-30.4 SWMH-32.1		69.602	-0.17	0 0	.000	0.55	7	7.0 C
<mark>\$8.003</mark> 10.000			69.602 69.530	-0.17 -0.10		.000	0.55 0.88		
S8.003 310.000 310.001	SWMH-32.1				2 0			12	
S8.003 S10.000 S10.001 S8.004	SWMH-32.1 SWMH-32.2		69.530	-0.10	02 0 13 0	.000	0.88	12 <mark>31</mark>	5.4 C

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micro			
Date 05/09/2019 14:02	Designed by Zvonimir Salkic				
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage			
Micro Drainage	Network 2017.1.2				

PN	US/MH Name	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status
s11.000	SWMH-40.1		69.922	-0.062	0.000	0.28		14.5	OK
S11.000 S11.001	SWMH-40.1 SWMH-40.2		69.922	-0.082	0.000	0.28		77.3	SURCHARGED
S11.002	SWMH-40.3		69.872	0.161	0.000	0.87		122.4	SURCHARGED
S11.003	SWMH-40.4		69.818	0.249	0.000	1.29		108.5	SURCHARGED
S12.000	SWMH-44.1		69.829	0.129	0.000	0.52		30.6	SURCHARGED
S12.001	SWMH-44.2		69.806	0.214	0.000	0.43		21.6	SURCHARGED
S11.004	SWMH-40.5		69.794	0.246	0.000	1.04		136.0	SURCHARGED
S13.000	SWMH-41.1		69.877	0.057	0.000	0.70		139.6	SURCHARGED
S13.001	SWMH-41.2		69.835	0.182	0.000	0.88		176.8	SURCHARGED
S11.005	SWMH-40.6		69.730	0.252	0.000	1.25		318.6	SURCHARGED
S14.000	SWMH-42.1		69.674	-0.081	0.000	0.59		57.6	OK
S14.001	SWMH-42.2		69.633	0.078	0.000	0.86		83.9	SURCHARGED
S11.006	SWMH-40.7		69.536	0.181	0.000	2.88		403.8	SURCHARGED
S15.000	SWMH-43.1		69.687	-0.158	0.000	0.49		48.9	OK
S15.001	SWMH-43.2		69.631	-0.056	0.000	0.96		96.4	OK
S15.002	SWMH-43.3		69.490	-0.014	0.000	0.91		90.2	OK
S11.007	SWMH-40.8		69.378	0.048	0.000	1.31		484.7	SURCHARGED
S11.008	SWMH-40.9		69.271	0.000	0.000	1.71		478.1	OK
S11.009	SWMH-40.10		69.199	-0.001	0.000	1.01		474.2	OK
S3.008	SWMH-OUTFALL		68.803	-0.297	0.000	0.07		24.2	OK

	US/MH	Level
PN	Name	Exceeded
S8.000	SWMH-30.1	
S8.001	SWMH-30.2	
S8.002	SWMH-30.3	
\$9.000	SWMH-31.1	
\$9.001	SWMH-31.2	
S8.003	SWMH-30.4	
S10.000	SWMH-32.1	
S10.001	SWMH-32.2	
S8.004	SWMH-30.5	
S8.005	SWMH-30.6	
S8.006	SWMH-30.7	
S11.000	SWMH-40.1	
S11.001	SWMH-40.2	
S11.002	SWMH-40.3	
S11.003	SWMH-40.4	
S12.000	SWMH-44.1	
S12.001	SWMH-44.2	
S11.004	SWMH-40.5	
S13.000	SWMH-41.1	
S13.001	SWMH-41.2	
S11.005	SWMH-40.6	
S14.000	SWMH-42.1	
©1982-2	017 XP Sol	utions

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u>Y</u>			
County Dublin		Micro			
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage			
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Diamatje			
Micro Drainage	Network 2017.1.2				

PN	US/MH Name	Level Exceeded
S14.001	SWMH-42.2	
S11.006	SWMH-40.7	
S15.000	SWMH-43.1	
S15.001	SWMH-43.2	
S15.002	SWMH-43.3	
S11.007	SWMH-40.8	
S11.008	SWMH-40.9	
S11.009	SWMH-40.10	
S3.008	SWMH-OUTFALL	

Clifton Scannell	L Emerson A	Associa	ates			Pa	age 30
Seefort Lodge (Castledaws	on	Engine	node Clonee		ſ	
Blackrock			Surfac	e Watre Netw	work 1	2	1
County Dublin							licco
Date 05/09/2019	14:02		Design	ed by Zvonir	nir Salki	C	Aicro
File EngineNode	Network 1	MDX	-	d by Conor I)rainagi
 Micro Drainage				k 2017.1.2			
<u>100 year Retur</u>		<u>si</u>	<u>1) for</u>		-		
Ho Manhole Headl Foul Sewage Numk Nu	Hot Start t Start Leve oss Coeff (G per hectare per of Input umber of Onl.	(mins) el (mm) Global) e (l/s) Hydrogr ine Cont	0 0 0.500 Fl 0.000 caphs 0 N crols 1 N	MADD Facto ow per Person Jumber of Stora Jumber of Time/ Jumber of Real	r * 10m³/h Inlet Coe per Day (l age Structu /Area Diagu	a Storage ffiecient /per/day) ures 1 cams 0	2.000 0.800
		Comth	stic Data	fall Dotoile			
	Rainfall Mod		ecic Rain	<u>fall Details</u> FSR R	atio R 0.3	23	
			land and	Ireland Cv (S			
	M5-60 (m	um)		17.800 Cv (W	inter) 0.8	40	
Mar	gin for Floo	d Dick I	Marning	(mm) 200 0	DUD Otatu		
Mai							
	9111 101 1100		-	(mm) 300.0 step Fine Ine			
	91 101 1100		sis Times	step Fine Ine atus ON			
	9		sis Times	step Fine Ine			
	-	Analy	sis Times	step Fine Ine	rtia Statu	s OFF	
	Prof	Analy	sis Times DTS Sta	step Fine Ine atus ON	rtia Statu Summer ar	s OFF nd Winter	
I	Prof	Analy ile(s) (mins) 1	sis Times DTS Sta	step Fine Ine	rtia Statu Summer ar 360, 480, 9	s OFF nd Winter	
I Return	Prof Duration(s)	Analy ile(s) (mins) 2 years)	sis Times DTS Sta	step Fine Ine atus ON	rtia Statu Summer ar 360, 480, 9 5,	s OFF nd Winter 960, 1440	
I Return	Prof Duration(s) Period(s) (Analy ile(s) (mins) 2 years)	sis Times DTS Sta	step Fine Ine atus ON	rtia Statu Summer ar 360, 480, 9 5,	s OFF nd Winter 960, 1440 30, 100	
I Return (Prof Duration(s) Period(s) (Analy ile(s) (mins) (years) ge (%)	sis Times DTS Sta	step Fine Ine atus ON 50, 120, 240, 3	rtia Statu Summer ar 360, 480, 5 5, 10	s OFF Md Winter 060, 1440 30, 100 0, 10, 10	
I Return (US/MH	Prof Duration(s) Period(s) (Climate Chan	Analy ile(s) (mins) (years) ge (%) Return	sis Times DTS Sta 15, 30, 6 Climate	step Fine Ine atus ON 50, 120, 240, 3 First (X)	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return US/MH PN Name	Prof Duration(s) Period(s) (Climate Chan Storm	Analy ile(s) (mins) (years) ge (%) Return Period	sis Times DTS Sta 15, 30, 6 Climate Change	step Fine Ine atus ON 50, 120, 240, 3 First (X) Surcharge	rtia Statu Summer ar 360, 480, 5 5, 10	s OFF Md Winter 060, 1440 30, 100 0, 10, 10	Overflow Act.
I Return US/MH PN Name S3.000 SWMH-20.1	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter	Analy ile(s) (mins) 1 years) ge (%) Return Period 100	sis Times DTS Sta 15, 30, 6 Climate Change +10%	step Fine Ine atus ON 50, 120, 240, 3 First (X) Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return (US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter	Analy ile(s) (mins) 1 years) ge (%) Return Period 100 100	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 First (X) Surcharge 30/15 Summer 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return (US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10%	<pre>step Fine Ine atus ON 50, 120, 240, 3 50, 120, 120, 240, 3 50, 120, 120, 120, 120, 120, 120, 120, 12</pre>	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return (US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-22.1	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 First (X) Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return (US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10%	<pre>step Fine Ine atus ON 50, 120, 240, 3 50, 120, 120, 240, 3 50, 120, 120, 120, 120, 120, 120, 120, 12</pre>	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return (US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-22.1 S4.001 SWMH-21.2	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
I Return () US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3	Prof Duration(s) Period(s) (Climate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.6	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.7	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.7 S3.007 SWMH-20.8	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 1440 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.6 S3.006 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 1440 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	First (X) Surcharge 30/15 Summer 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.1 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.5 S3.005 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 1440 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	First (X) Surcharge 30/15 Summer 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.5 S3.005 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2 S6.002 SWMH-10.3	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 30 Winter 15 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.4 S3.006 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2 S6.002 SWMH-10.3 S6.003 SWMH-10.4	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 1440 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Surcharge 30/15 30/15 Summer 30/15	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.4 S3.006 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2 S6.002 SWMH-10.3 S6.003 SWMH-10.4 S6.004 SWMH-10.5	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Surcharge 30/15 Surcharge 30/15 Surcharge 30/15 Summer 30/15	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.4 S3.006 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2 S6.002 SWMH-10.3 S6.003 SWMH-10.5 S6.005 SWMH-10.6	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.4 S3.006 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2 S6.002 SWMH-10.3 S6.003 SWMH-10.4 S6.004 SWMH-10.5	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	
US/MH PN Name S3.000 SWMH-20.1 S3.001 SWMH-20.1 S3.001 SWMH-20.2 S4.000 SWMH-21.1 S5.000 SWMH-21.1 S5.000 SWMH-21.2 S4.001 SWMH-21.2 S4.002 SWMH-21.3 S3.002 SWMH-20.3 S3.003 SWMH-20.4 S3.004 SWMH-20.5 S3.005 SWMH-20.4 S3.006 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-20.7 S3.007 SWMH-20.8 S6.000 SWMH-10.1 S6.001 SWMH-10.2 S6.002 SWMH-10.3 S6.003 SWMH-10.4 S6.004 SWMH-10.5 S6.005 SWMH-10.6 S7.000 SWMH-11.1	Prof Duration(s) Period(s) (Climate Chan 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Times DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Step Fine Ine atus ON 50, 120, 240, 3 50, 120, 240, 3 Surcharge 30/15 Summer	rtia Statu Summer ar 360, 480, 9 5, 10 First (Y)	s OFF ad Winter 260, 1440 30, 100 0, 10, 10 First (Z)	

Clifton Scannell Emerson Associates				
Seefort Lodge Castledawson	Enginenode Clonee			
Blackrock	Surface Watre Network 1	<u> </u>		
County Dublin		Micro		
Date 05/09/2019 14:02	Designed by Zvonimir Salkic			
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage		
Micro Drainage	Network 2017.1.2	·		

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
s3.000	SWMH-20.1	70.662	0.917	0.000	1.41		84.9	FLOOD RISK	
S3.001	SWMH-20.2	70.396	0.823	0.000	1.66		94.8	SURCHARGED	
S4.000	SWMH-21.1	70.608	0.608	0.000	0.16		8.9	SURCHARGED	
S5.000	SWMH-22.1	70.642	0.592	0.000	0.63		37.0	SURCHARGED	
S4.001	SWMH-21.2	70.601	0.669	0.000	0.96		55.4	SURCHARGED	
S4.002	SWMH-21.3	70.532	0.691	0.000	1.44		87.0	SURCHARGED	
S3.002	SWMH-20.3	70.187	0.697	0.000	1.54		196.4	SURCHARGED	
S3.003	SWMH-20.4	70.068	0.634	0.000	1.49		212.6	SURCHARGED	
S3.004	SWMH-20.5	69.728	0.478	0.000	1.45		208.1	SURCHARGED	
S3.005	SWMH-20.6	69.305	0.250	0.000	1.60		214.9	SURCHARGED	
S3.006	SWMH-20.7	69.083	0.113	0.000	2.75		215.2	SURCHARGED	
S3.007	SWMH-20.8	68.924	0.024	0.000	0.13		22.6	SURCHARGED	
S6.000	SWMH-10.1	70.624	0.907	0.000	1.10		155.6	FLOOD RISK	
S6.001	SWMH-10.2	70.505	0.959	0.000	1.64		170.5	SURCHARGED	
S6.002	SWMH-10.3	70.455	0.947	0.000	1.40		189.9	FLOOD RISK	
S6.003	SWMH-10.4	70.283	0.874	0.000	1.62		222.1	SURCHARGED	
S6.004	SWMH-10.5	70.009	0.710	0.000	1.19		247.8	SURCHARGED	
S6.005	SWMH-10.6	69.801	0.624	0.000	1.37		268.9	SURCHARGED	
S7.000	SWMH-11.1	69.590	0.290	0.000	0.54		50.1	SURCHARGED	
S6.006	SWMH-10.7	69.565	0.512	0.000	2.61		301.2	SURCHARGED	
S6.007	SWMH-10.8	69.410	0.435	0.000	1.95		282.2	SURCHARGED	

	annell Eme			_					Page 32
eefort Lo	dge Castle	on	Enginenode Clonee						
lackrock	Surfa	Surface Watre Network 1							
ounty Dub	lin								Micco
-	/2019 14:02	2		Desia	ned bv	Zvon	imir Sa	alkic	Micro
'ile Engin	-	-		Dohert		Drainag			
licro Drai	-				rk 201			- 1	
IICIO DIAI	IIIage			Netwo.	IK 201	1.1.2			
<u>100 year</u>	<u>Return Per</u>	iod S	ummary		<u>itical</u> Storm		lts by	Maximum 1	Level (Rank
	US/MH			Return (Climate	Fir	st (X)	First (Y)	First (Z)
PN	Name	St	corm	Period	Change	Sur	charge	Flood	Overflow
S8.000	SWMH-30.1	15	Winter	100	+10%	100/1	5 Summer		
\$8.000	SWMH-30.2		Winter	100	+10%		5 Summer		
s8.002	SWMH-30.3		Winter	100	+10%		5 Summer		
S9.000	SWMH-31.1		Winter	100	+10%		5 Summer		
S9.001	SWMH-31.2		Winter	100	+10%		5 Summer		
s8.003	SWMH-30.4		Winter	100	+10%		5 Summer		
S10.000	SWMH-32.1		Winter	100	+10%				
S10.001	SWMH-32.2	15	Winter	100	+10%	100/1	5 Summer		
S8.004	SWMH-30.5	15	Winter	100	+10%	30/1	5 Summer		
S8.005			Winter	100	+10%		5 Summer		
S8.006	SWMH-30.7		Winter	100	+10%		5 Summer		
S11.000	SWMH-40.1		Winter	100			5 Summer		
S11.001	SWMH-40.2		Winter	100	+10%		5 Winter		
S11.002	SWMH-40.3		Winter	100	+10%		5 Summer		
S11.003	SWMH-40.4		Winter	100	+10%		5 Summer		
S12.000	SWMH-44.1		Winter	100	+10%		5 Summer 5 Summer		
S12.001	SWMH-44.2 SWMH-40.5		Winter Winter	100 100	+10% +10%		5 Summer 5 Summer		
S11.004 S13.000	SWMH-40.5 SWMH-41.1		Winter Winter	100	+10% +10%		5 Summer 5 Winter		
\$13.000 \$13.001	SWMH-41.1 SWMH-41.2		Winter	100	+10%		5 Winter 5 Summer		
s11.005	SWMH-41.2 SWMH-40.6		Winter	100	+10%		5 Summer 5 Summer		
S14.000	SWMH-42.1		Winter	100			5 Summer		
S14.001	SWMH-42.2		Winter	100	+10%		5 Summer		
S11.006	SWMH-40.7		Winter	100	+10%		5 Summer		
S15.000	SWMH-43.1	15	Winter	100	+10%	100/1	5 Winter		
S15.001	SWMH-43.2	15	Winter	100	+10%	100/1	5 Summer		
S15.002	SWMH-43.3		Winter	100	+10%	100/1	5 Summer		
S11.007	SWMH-40.8		Winter	100	+10%		5 Summer		
S11.008	SWMH-40.9		Winter	100			5 Summer		
S11.009	SWMH-40.10		Winter	100		100/1	5 Summer		
53.008	SWMH-OUTFALL	1440	winter	100	+10%				
			Water	Surchar	-				pe
		erflow		Depth			•	verflow Fl	
PN	Name 2	Act.	(m)	(m)	(1	m³)	Cap.	(l/s) (l	/s) Status
S8.000	SWMH-30.1		70.395	0.	510 C	.000	0.69	4	1.9 SURCHARGE
	SWMH-30.2		70.297			.000	1.01		0.8 SURCHARGE
	SWMH-30.3		70.138			.000	1.39		8.8 SURCHARGE
	SWMH-31.1		70.435			.000	1.45		7.6 SURCHARGE
	SWMH-31.2		70.195			.000	1.91		3.5 SURCHARGE
S9.000	SWITT JT . 7					0.000	1.70		5.8 SURCHARGE
S9.000 S9.001	SWMH-31.2 SWMH-30.4		70.096	•••					
S9.000 S9.001 S8.003			69.755	-0.		.000	0.69	9	6.8 0
S9.000 S9.001 S8.003 S10.000	SWMH-30.4			-0.	017 C				
S9.000 S9.001 S8.003 S10.000 S10.001	SWMH-30.4 SWMH-32.1		69.755	-0. 0.	017 C 054 C	.000	0.69	15	2.6 SURCHARGE
S9.000 S9.001 S8.003 S10.000 S10.001 S8.004 S8.005	SWMH-30.4 SWMH-32.1 SWMH-32.2		69.755 <mark>69.686</mark>	-0. 0. 0.	017 0 054 0 378 0 236 0	0.000	0.69 1.07	15 39 38	6.8 C 2.6 SURCHARGE 1.2 SURCHARGE 8.7 SURCHARGE 7.6 SURCHARGE

Clifton Scannell Emerson Associates								
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Watre Network 1	4						
County Dublin		Micro						
Date 05/09/2019 14:02	Designed by Zvonimir Salkic							
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Drainage						
Micro Drainage	Network 2017.1.2							

PN	US/MH Name	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status
			• •			•			
S11.000	SWMH-40.1		70.508	0.524	0.000	0.29		15.1	SURCHARGED
S11.001	SWMH-40.2		70.495	0.593	0.000	0.88		85.0	SURCHARGED
S11.002	SWMH-40.3		70.424	0.713	0.000	1.01		142.0	FLOOD RISK
S11.003	SWMH-40.4		70.313	0.744	0.000	1.64		138.4	SURCHARGED
S12.000	SWMH-44.1		70.328	0.628	0.000	0.61		35.4	FLOOD RISK
S12.001	SWMH-44.2		70.298	0.706	0.000	0.47		23.7	SURCHARGED
S11.004	SWMH-40.5		70.282	0.734	0.000	1.33		174.2	SURCHARGED
S13.000	SWMH-41.1		70.454	0.634	0.000	0.79		157.7	SURCHARGED
S13.001	SWMH-41.2		70.374	0.721	0.000	1.17		235.4	SURCHARGED
S11.005	SWMH-40.6		70.168	0.690	0.000	1.67		423.9	SURCHARGED
S14.000	SWMH-42.1		70.096	0.341	0.000	0.69		67.4	SURCHARGED
S14.001	SWMH-42.2		70.028	0.473	0.000	1.27		124.2	SURCHARGED
S11.006	SWMH-40.7		69.866	0.511	0.000	3.85		539.2	SURCHARGED
S15.000	SWMH-43.1		69.859	0.014	0.000	0.60		59.7	SURCHARGED
S15.001	SWMH-43.2		69.817	0.129	0.000	1.15		115.1	SURCHARGED
S15.002	SWMH-43.3		69.725	0.220	0.000	1.04		103.6	SURCHARGED
S11.007	SWMH-40.8		69.594	0.264	0.000	1.72		636.0	SURCHARGED
S11.008	SWMH-40.9		69.417	0.146	0.000	2.28		637.9	SURCHARGED
S11.009	SWMH-40.10		69.247	0.047	0.000	1.35		635.2	SURCHARGED
S3.008	SWMH-OUTFALL		68.922	-0.178	0.000	0.07		24.2	OK

	US/MH	Level
PN	Name	Exceeded
S8.000	SWMH-30.1	
S8.001	SWMH-30.2	
S8.002	SWMH-30.3	
\$9.000	SWMH-31.1	
S9.001	SWMH-31.2	
S8.003	SWMH-30.4	
S10.000	SWMH-32.1	
S10.001	SWMH-32.2	
S8.004	SWMH-30.5	
\$8.005	SWMH-30.6	
S8.006	SWMH-30.7	
S11.000	SWMH-40.1	
S11.001	SWMH-40.2	
S11.002	SWMH-40.3	
S11.003	SWMH-40.4	
S12.000	SWMH-44.1	
S12.001	SWMH-44.2	
S11.004	SWMH-40.5	
S13.000	SWMH-41.1	
S13.001	SWMH-41.2	
S11.005	SWMH-40.6	
S14.000	SWMH-42.1	
©1982-2	017 XP Sol	utions

Clifton Scannell Emerson Associa	Page 34	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:02	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_1.MDX	Checked by Conor Doherty	Digitigh
Micro Drainage	Network 2017.1.2	

US/MH Name	Level Exceeded
SWMH-42.2	
SWMH-40.7	
SWMH-43.1	
SWMH-43.2	
SWMH-43.3	
SWMH-40.8	
SWMH-40.9	
SWMH-40.10	
SWMH-OUTFALL	
	Name SWMH-42.2 SWMH-40.7 SWMH-43.1 SWMH-43.2 SWMH-43.3 SWMH-40.8 SWMH-40.9

Clifton Scannel	l Emers	on Assc	ciates						Pag	ge 1
Seefort Lodge (Castled	awson .	End	ginenode (Clonee					
Blackrock			Su	rface Wate	er Net	work	2		4	\sim
County Dublin									NA	icro
Date 05/09/2019	14:04		De	signed by	Zvoni	mir	Salk	ic		
File EngineNode	_Networ	k_2.MDX	Che Che	ecked by C	Conor	Dohe	rty			rainag
Aicro Drainage			Ne	twork 2017	7.1.2					
STC	ORM SEW	<u>er desi</u>	GN by	the Modif:	ied Ra	tion	al M	lethoo	<u>1</u>	
		<u>Des</u> :	ign Cri	iteria for	Stor	<u>m</u>				
	Pij	pe Sizes	STANDAR	RD Manhole S	Sizes S	TANDA	ARD			
	FS	SR Rainfa	all Mode	l - Scotlan	d and 1	Irela	nd			
Re	turn Per	riod (yea		100					PIMP (
			(mm) 17. .o R 0.		Add Fi				-	응) (m) 0.20
Maxim	um Rainf	Fall (mm/						-		m) 0.200 m) 1.500
Maximum Time of C	oncentra	ation (mi	ns)	30 Min Des	ign Dep	oth f	or Op	timisa	ation (m) 0.75
		ige (l/s/	,					-	-	s) 0.7
Volum	etric Ru	noff Coe	ett. 0.	/50 Mi	n Slope	e for	Opti	misati	on (1:	X) 50
		Des	signed w	with Level S	offits					
		<u>Time</u>	Area I	Diagram fo	<u>r Sto</u>	rm				
		-		ime Area	Time					
		(mins) (ha) (mi	ins) (ha)	(mins)	(ha)				
		0-4 0	.306	4-8 1.995	8-12	0.84	3			
			1	I			8			
			1	4-8 1.995			3			
		Total A	rea Cont	I	na) = 3	.150	3			
		Total A	rea Cont	tributing (P	na) = 3	.150	3			
		Total A Total	' rea Cont Pipe Vo	tributing (P	na) = 3 = 160.8	.150 72	3			
		Total A Total <u>Networ</u>	rea Cont Pipe Vo <u>k Desi</u>	tributing (r	na) = 3 = 160.8 <u>for St</u>	.150 72	3			
PN Length Fa.	-	Total A Total <u>Networ</u> « - In e I.Area	rea Cont Pipe Vo <u>k Desi</u> dicates T.E.	tributing (P olume (m ³) = <u>gn Table :</u> pipe capaci Base	ha) = 3 = 160.8 for St ity < f k	.150 72 <u>corm</u> low HYD	DIA	Secti	Lon Typ	
PN Length Fa. (m) (m	-	Total A Total <u>Networ</u> « - In e I.Area	rea Cont Pipe Vo <u>k Desi</u> dicates T.E.	tributing (H olume (m³) = gn Table : pipe capaci	na) = 3 = 160.8 <u>for St</u> ity < f	.150 72 <u>corm</u> low	DIA	Secti	Lon Typ	e Auto Desig
(m) (m s1.000 63.805 0.1	n) (1:X)	Total A Total <u>Networ</u> « - In e I.Area) (ha) 5 0.378	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00	tributing (H plume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0	ha) = 3 = 160.8 <u>for St</u> ity < f k (mm) 0.600	.150 72 corm low HYD sect o	DIA (mm) 450	Pipe/	Condui	Desig:
(m) (n \$1.000 63.805 0.1 \$1.001 68.227 0.1	n) (1:X)	Total A Total <u>Networ</u> « - In e I.Area) (ha) 5 0.378 0 0.370	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00	tributing (H plume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0	ha) = 3 = 160.8 for St ity < f k (mm) 0.600 0.600	.150 72 corm low HYD sect o o	DIA (mm) 450 525	Pipe/ Pipe/	/Condui /Condui	Design t 🔒
(m) (n s1.000 63.805 0.1	(1:X) 28 498.3 36 500.0 062 500.0	Total A Total <u>Networ</u> « - In e I.Area) (ha) 5 0.378 0 0.370 0 0.020	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00	tributing (H clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0	ha) = 3 = 160.8 <u>for St</u> ity < f k (mm) 0.600	.150 72 corm low HYD sect o	DIA (mm) 450 525 525	Pipe/ Pipe/ Pipe/	Condui	Design t 🕆 t 💣 t 💣
(m) (m \$1.000 63.805 0.1 \$1.001 68.227 0.1 \$1.002 30.781 0.0	(1:X) 28 498.3 36 500.0 062 500.0	Total A Total <u>Networ</u> « - In e I.Area) (ha) 5 0.378 0 0.370 0 0.020	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00	tributing (H clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0	ha) = 3 = 160.8 for St ity < f k (mm) 0.600 0.600 0.600	.150 72 20rm low HYD SECT 0 0 0	DIA (mm) 450 525 525	Pipe/ Pipe/ Pipe/	Condui Condui Condui	Design t 🔒 t 💣
(m) (m \$1.000 63.805 0.1 \$1.001 68.227 0.1 \$1.002 30.781 0.0	(1:X) 28 498.3 36 500.0 062 500.0	Total A Total <u>Networ</u> « - In e I.Area (ha) 5 0.378 0.370 0.020 0 0.158	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00 0.00	tributing (H clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0	ha) = 3 = 160.8 for St ity < f k (mm) 0.600 0.600 0.600 0.600	.150 72 20rm low HYD SECT 0 0 0	DIA (mm) 450 525 525	Pipe/ Pipe/ Pipe/	Condui Condui Condui	Design t 🕆 t 💣 t 💣
(m) (m S1.000 63.805 0.1 S1.001 68.227 0.1 S1.002 30.781 0.0	(1:X) 28 498.3 36 500.0 062 500.0	Total A Total <u>Networ</u> « - In e I.Area (ha) 5 0.378 0.370 0.020 0 0.158	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00 0.00 0.00	tributing (h clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0	ha) = 3 = 160.8 for St ity < f k (mm) 0.600 0.600 0.600 0.600	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525	Pipe/ Pipe/ Pipe/ Vel	Condui Condui Condui Condui	Design t t t t t t t t f Flow
(m) (m \$1.000 63.805 0.1 \$1.001 68.227 0.1 \$1.002 30.781 0.0 \$1.003 40.480 0.0	 a) (1:x) 28 498.3 36 500.0 36 500.0 36 500.0 36 500.0 36 500.0 	Total A Total <u>Networ</u> « - In • I.Area • (ha) 5 0.378 0 0.370 0 0.020 0 0.158	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00 0.00 0.00	tributing (h clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0	<pre>ha) = 3 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 0.600 fable Foul</pre>	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525	Pipe/ Pipe/ Pipe/ Vel	'Condui 'Condui 'Condui 'Condui	Design t t t t t t t t f Flow
(m) (m S1.000 63.805 0.1 S1.001 68.227 0.1 S1.002 30.781 0.0 S1.003 40.480 0.0 PN Rain	n) (1:X) 28 498.3 36 500.0 062 500.0 081 500.0 T.C. (mins)	Total A Total <u>Networ</u> « - In • I.Area) (ha) 5 0.378 0 0.370 0 0.020 0 0.158 <u>Networ</u> <u>Networ</u>	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00 0.00 0.00 0.00 <u>etwork</u>	tributing (H clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <u>Results T</u> E Base Flow (l/s)	<pre>ha) = 3 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s)</pre>	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525	Pipe/ Pipe/ Pipe/ Vel (m/s)	Condui Condui Condui Condui	Design t f t f t f t f t f t f t f t f t f t f
(m) (m S1.000 63.805 0.1 S1.001 68.227 0.1 S1.002 30.781 0.0 S1.003 40.480 0.0 PN Rain (mm/hr) S1.000 50.00 S1.001 50.00	 a) (1:x) .28 498.3 .36 500.0 .36 500.0<	Total A Total <u>Networ</u> « - In e I.Area) (ha) 5 0.378 0 0.370 0 0.020 0 0.158 <u>N</u> (m) 68.375 68.172	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00 0.00 <u>etwork</u> I.Area (ha) 0.378 0.747	tributing (h clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>ha) = 3 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0</pre>	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525 Flow (s) 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.99	(Condui (Condui (Condui (Condui (Condui (Condui 143.7 215.4	Desig: t 0 t 0 t 0 flow (l/s) 51.1 101.2
(m) (m S1.000 63.805 0.1 S1.001 68.227 0.1 S1.002 30.781 0.0 S1.003 40.480 0.0 PN Rain (mm/hr) S1.000 50.00 S1.001 50.00 S1.002 50.00	 a) (1:x) 28 498.3 36 500.0 b) 62 500.0 b) 81 500.0 c) 81 500.0 c) 81 500.0 c) 81 500.0 d) 81 500.0 	Total A Total <u>Networ</u> « - In • I.Area) (ha) 5 0.378 0 0.370 0 0.020 0 0.158 <u>Networ</u> (m) 68.375 68.172 68.036	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0	tributing (h clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ha) = 3 = 160.8 for St ity < f k (mm) 0.600 0.000 0.600 0.0000 0.000000	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525 Flow (s) 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.99 0.99	(Condui (Condui (Condui (Condui (Condui (1/s) 143.7 215.4 215.4	Design t t t flow (1/s) 51.1 101.2 103.9
(m) (m S1.000 63.805 0.1 S1.001 68.227 0.1 S1.002 30.781 0.0 S1.003 40.480 0.0 PN Rain (mm/hr) S1.000 50.00 S1.001 50.00	 a) (1:x) 28 498.3 36 500.0 b) 62 500.0 b) 81 500.0 c) 81 500.0 c) 81 500.0 c) 81 500.0 d) 81 500.0 	Total A Total <u>Networ</u> « - In e I.Area) (ha) 5 0.378 0 0.370 0 0.020 0 0.158 <u>N</u> (m) 68.375 68.172	rea Cont Pipe Vo <u>k Desi</u> dicates T.E. (mins) 5.00 0.00 0.00 0.00 <u>etwork</u> I.Area (ha) 0.378 0.747	tributing (h clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>ha) = 3 for St for St ity < f k (mm) 0.600 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0 0.0</pre>	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525 Flow (s) 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.99 0.99	(Condui (Condui (Condui (Condui (Condui (Condui 143.7 215.4	Design t t t flow (1/s) 51.1 101.2 103.9
(m) (m \$1.000 63.805 0.1 \$1.001 68.227 0.1 \$1.002 30.781 0.0 \$1.003 40.480 0.0 PN Rain (mm/hr) \$1.000 50.00 \$1.001 50.00 \$1.002 50.00	 a) (1:x) 28 498.3 36 500.0 b) 62 500.0 b) 81 500.0 c) 81 500.0 c) 81 500.0 c) 81 500.0 d) 81 500.0 	Total A Total <u>Networ</u> « - In • I.Area (ha) 5 0.378 0 0.370 0 0.020 0 0.158 <u>Na</u> (m) 68.375 68.172 68.036 67.974	rea Cont Pipe Vo <u>Ck Desi</u> dicates T.E. (mins) 5.00 0.0747 0.767 0.926	tributing (h clume (m ³) = <u>gn Table :</u> pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ha) = 3 = 160.8 for St ity < f k (mm) 0.600 0.0000 0.0000 0.0000 0.000000	.150 72 .orm low HYD SECT 0 0 0 0 0	DIA (mm) 450 525 525 525 Flow (s) 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 0.90 0.99 0.99	(Condui (Condui (Condui (Condui (Condui (1/s) 143.7 215.4 215.4	Design t t t flow (1/s) 51.1 101.2 103.9

Clifton Scannell Emerson Associa	Page 2	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	L.
County Dublin		Micro
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Dialitiage
Micro Drainage	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S2.000	43.603	0.145	300.0	0.058	5.00	0.0	0.600	0	300	Pipe/Conduit	3
S1.004	112.893	0.226	499.5	0.318	0.00	0.0	0.600	0	525	Pipe/Conduit	ď
s3.000	83.121	0 277	300 0	0.201	5.00	0 0	0.600	0		Pipe/Conduit	-
S3.000	15.466		300.0	0.023	0.00		0.600	0		Pipe/Conduit	0 0
S3.001	82.680			0.023	0.00		0.600	0		Pipe/Conduit	o f
S3.002	46.862			0.230	0.00		0.600	0		Pipe/Conduit	ď
s3.004	14.136			0.000	0.00		0.600	0		Pipe/Conduit	ď
S4.000	82.294	0.219	375.0	0.212	5.00	0.0	0.600	0	375	Pipe/Conduit	0
S4.001	53.634	0.143	375.0	0.150	0.00	0.0	0.600	0	375	Pipe/Conduit	0
S5.000	84.199	0.225	375.0	0.287	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S5.001	45.683	0.122	375.0	0.190	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S5.002	18.201	0.049	375.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	
S3.005	44.744	0.089	500.0	0.102	0.00	0.0	0.600	0	525	Pipe/Conduit	0
S1.005	41.916		598.8	0.178	0.00	0.0	0.600	0		Pipe/Conduit	•
S1.006	9.419	0.022		0.000	0.00	0.0		0		1 .,	0
S1.007	15.052	0.100	150.5	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S2.000	50.00	5.81	68.288	0.058	0.0	0.0	0.0	0.90	63.8	7.8
S1.004	50.00	10.40	67.893	1.301	0.0	0.0	0.0	1.00	215.5	176.2
S3.000	50.00	6.53	68.770	0.201	0.0	0.0	0.0	0.90	63.8	27.2
S3.001	50.00	6.78	68.418	0.224	0.0	0.0	0.0	1.04	115.0	30.3
S3.002	50.00	8.23	68.291	0.501	0.0	0.0	0.0	0.95	151.4	67.8
S3.003	50.00	9.05	68.108	0.731	0.0	0.0	0.0	0.95	151.4	99.0
S3.004	50.00	9.30	68.004	0.731	0.0	0.0	0.0	0.95	151.4	99.0
S4.000	50.00	6.48	68.425	0.212	0.0	0.0	0.0	0.93	102.7	28.8
S4.001	50.00	7.44	68.206	0.362	0.0	0.0	0.0	0.93	102.7	49.0
S5.000	50.00	6.51	68.475	0.287	0.0	0.0	0.0	0.93	102.7	38.9
S5.001	50.00	7.33	68.250	0.477	0.0	0.0	0.0	0.93	102.7	64.5
S5.002	50.00	7.65	68.129	0.477	0.0	0.0	0.0	0.93	102.7	64.5
S3.005	50.00	10.05	67.861	1.671	0.0	0.0	0.0	0.99	215.4«	226.3
S1.005	50.00	11.11	67.592	3.150	0.0	0.0	0.0	0.99	279.3«	426.6
S1.006	50.00	11.25	67.472	3.150	0.0	0.0	0.0	1.17	331.0«	426.6
S1.007	50.00	11.37	67.450	3.150	0.0	0.0	0.0	1.98	560.6	426.6
			C	1982-201	l7 XP Solu	tions				

Clifton Scannell Emerson Associa	Page 3	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	<u> </u>
County Dublin		Micco
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	Drainarre
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Dialitada
Micro Drainage	Network 2017.1.2	

<u>Network Design Table for Storm</u>

PN				1 Slog (1:2			T.E. (mins)						Secti	on Typ	e Auto Desig
.008	24.	885	0.05	50 497	.7 0.	000	0.00		0.0	0.600	0	375	Pipe/	Condui	t 🤒
						<u>Ne</u>	twork	Resu	lts T	<u>able</u>					
PN		Rai (mm/l		T.C. (mins)			I.Area (ha)							Cap (l/s)	
S1.0	08	50	.00	11.89	67.35	0	3.150		0.0	0.0		0.0	0.81	89.0«	426.6

Clifton Scannell Emerson Associates								
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Water Network 2	<u> </u>						
County Dublin		Micro						
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	Drainade						
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Digiliada						
Micro Drainage	Network 2017.1.2							

Mannore Schedules for Storm											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert 1 Level (m)	Diameter (mm)	Backdro (mm)
S60.1	69.600	1.225	Open Manhole	1350	s1.000	68.375	450				
S60.2	69.600	1.428	Open Manhole	1500	S1.001	68.172	525	S1.000	68.247	450	
S60.3	69.600	1.564	Open Manhole	1500	S1.002	68.036	525	S1.001	68.036	525	
S60.4	69.495	1.521	Open Manhole	1500	S1.003	67.974	525	S1.002	67.974	525	
S64.1	69.600	1.312	Open Manhole	1200	S2.000	68.288	300				
S60.5	69.300	1.407	Open Manhole	1500	S1.004	67.893	525	S1.003	67.893	525	
								s2.000	68.143	300	
S61.1	70.320	1.550	Open Manhole	1200	s3.000	68.770	300				
S61.2	69.600	1.182	Open Manhole	1350	S3.001	68.418	375	s3.000	68.493	300	
S61.3	69.600	1.309	Open Manhole	1350	s3.002	68.291	450	s3.001	68.366	375	
S61.4	69.600	1.492	Open Manhole	1350	s3.003	68.108	450	S3.002	68.108	450	
S61.5	69.600	1.596	Open Manhole	1350	S3.004	68.004	450	s3.003	68.004	450	
S62.1	69.550	1.125	Open Manhole	1350	S4.000	68.425	375				
S62.2	69.530	1.325	Open Manhole	1350	S4.001	68.206	375	S4.000	68.206	375	
S63.1	69.600	1.125	Open Manhole	1350	s5.000	68.475	375				
S63.2	69.600	1.350	Open Manhole	1350	S5.001	68.250	375	s5.000	68.250	375	
S63.4	69.600	1.471	Open Manhole	1350	s5.002	68.129	375	s5.001	68.129	375	
S61.6	69.400	1.539	Open Manhole	1500	s3.005	67.861	525	s3.004	67.972	450	
								\$4.001	68.063	375	
								s5.002	68.080	375	
S60.6	69.176	1.584	Open Manhole	1500	s1.005	67.592	600	s1.004	67.667	525	
								s3.005	67.772	525	1
S60.7	69.477	2.005	Open Manhole	1500	S1.006	67.472	600	s1.005	67.522	600	
SOUTFALL	69.000	1.550	Open Manhole	1500	S1.007	67.450	600	S1.006	67.450	600	
S21	68.733	1.383	Open Manhole	1500	S1.008	67.350	375	s1.007	67.350	600	
S	68.436	1.136	Open Manhole	0		OUTFALL		S1.008	67.300	375	

Manhole Schedules for Storm

Clifton Scannell Emerson Associates						
Seefort Lodge Castledawson	Enginenode Clonee					
Blackrock	Surface Water Network 2	<u> </u>				
County Dublin		Micco				
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	Drainage				
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Dialitage				
Micro Drainage	Network 2017.1.2	1				

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	450	S60.1	69.600	68.375	0.775	Open Manhole	1350
S1.001	0	525	S60.2	69.600	68.172	0.903	Open Manhole	1500
S1.002	0	525	S60.3	69.600	68.036	1.039	Open Manhole	1500
S1.003	0	525	S60.4	69.495	67.974	0.996	Open Manhole	1500
S2.000	0	300	S64.1	69.600	68.288	1.012	Open Manhole	1200
S1.004	0	525	S60.5	69.300	67.893	0.882	Open Manhole	1500
S3.000	0	300	S61.1	70.320	68.770	1.250	Open Manhole	1200
S3.001	0	375	S61.2	69.600	68.418	0.807	Open Manhole	1350
S3.002	0	450	S61.3	69.600	68.291	0.859	Open Manhole	1350
S3.003	0	450	S61.4	69.600	68.108	1.042	Open Manhole	1350
S3.004	0	450	S61.5	69.600	68.004	1.146	Open Manhole	1350
S4.000	0	375	S62.1	69.550	68.425	0.750	Open Manhole	1350
S4.001	0	375	S62.2	69.530	68.206	0.949	Open Manhole	1350
S5.000	0	375	S63.1	69.600	68.475	0.750	Open Manhole	1350
S5.001	0	375	S63.2	69.600	68.250	0.975	Open Manhole	1350
S5.002	0	375	S63.4	69.600	68.129	1.096	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	63.805	498.5	S60.2	69.600	68.247	0.903	Open Manhole	1500
S1.001	68.227	500.0	S60.3	69.600	68.036	1.039	Open Manhole	1500
S1.002	30.781	500.0	S60.4	69.495	67.974	0.996	Open Manhole	1500
S1.003	40.480	500.0	S60.5	69.300	67.893	0.882	Open Manhole	1500
S2.000	43.603	300.0	S60.5	69.300	68.143	0.857	Open Manhole	1500
S1.004	112.893	499.5	S60.6	69.176	67.667	0.984	Open Manhole	1500
S3.000	83.121	300.0	S61.2	69.600	68.493	0.807	Open Manhole	1350
S3.001	15.466	300.0	S61.3	69.600	68.366		Open Manhole	1350
S3.002	82.680	450.0	S61.4	69.600	68.108	1.042	Open Manhole	1350
S3.003	46.862	450.0	S61.5	69.600	68.004	1.146	Open Manhole	1350
S3.004	14.136	450.0	S61.6	69.400	67.972	0.978	Open Manhole	1500
S4.000	82.294	375.0	S62.2	69.530	68.206	0.950	Open Manhole	1350
S4.001	53.634	375.0	S61.6	69.400	68.063	0.962	Open Manhole	1500
S5.000	84.199	375.0	S63.2	69.600	68.250	0.975	Open Manhole	1350
S5.001	45.683	375.0	S63.4	69.600	68.129	1.096	Open Manhole	1350
S5.002	18.201	375.0	S61.6	69.400	68.080	0.945	Open Manhole	1500
			©.	1982-20	17 XP S	olution	S	

Clifton Scannell Emerson Associa	tes	Page 6
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.005	0	525	S61.6	69.400	67.861	1.014	Open Manhole	1500
S1.005 S1.006 S1.007 S1.008	0 0 0	600 600 600 375	S60.6 S60.7 SOUTFALL S21	69.176 69.477 69.000 68.733	67.592 67.472 67.450 67.350	1.405 0.950	Open Manhole Open Manhole Open Manhole Open Manhole	1500 1500 1500 1500

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.005	44.744	500.0	S60.6	69.176	67.772	0.879	Open Manhole	1500
	41.916 9.419		S60.7 SOUTFALL				Open Manhole Open Manhole	1500 1500
	15.052 24.885		S21 S		67.350 67.300		Open Manhole Open Manhole	1500 0

Clifton Scannell Emerson Associa	tes	Page 7
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

<u>Area Summary for Storm</u>

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1 000	Classification	Craval	75	0.234	0.175	0.175
1.000	Classification	Roof	100	0.202	0.202	0.378
1 001	Classification		75	0.215	0.161	0.161
1.001	Classification	Roof	100	0.209	0.209	0.370
1.002	Classification		30	0.067	0.020	0.020
	Classification	Road	100	0.158	0.158	0.158
	Classification	Road	100	0.058	0.058	0.058
	Classification	Roof	100	0.189	0.189	0.189
1.001	Classification	Road	100	0.129	0.129	0.318
3.000	Classification	Grass	30	0.391	0.117	0.117
0.000	Classification	Road	100	0.083	0.083	0.201
3.001	Classification	Grass	30	0.078	0.023	0.023
	Classification	Roof	100	0.252	0.252	0.252
	Classification	Grass	30	0.083	0.025	0.277
3.003	Classification	Roof	100	0.205	0.205	0.205
	Classification	Grass	30	0.084	0.025	0.230
3.004	-	_	100	0.000	0.000	0.000
4.000	Classification	Road	100	0.212	0.212	0.212
4.001	Classification	Road	100	0.150	0.150	0.150
5.000	Classification	Roof	100	0.262	0.262	0.262
	Classification	Grass	30	0.082	0.024	0.287
5.001	Classification	Roof	100	0.171	0.171	0.171
	Classification	Grass	30	0.062	0.019	0.190
5.002	-	-	100	0.000	0.000	0.000
3.005	Classification	Road	100	0.096	0.096	0.096
	Classification	Grass	30	0.021	0.006	0.102
1.005	Classification	Roof	100	0.127	0.127	0.127
	Classification	Road	100	0.051	0.051	0.178
1.006	-	-	100	0.000	0.000	0.000
1.007	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				3.869	3.150	3.150

Clifton Scannell Emerson Associa	Page 8	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	L'
County Dublin		Micro
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	1

Network Classifications for Storm

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре
S1.000	S60.1	450	0.775		Unclassified		0		Unclassified
S1.001	S60.2	525	0.903		Unclassified		0		Unclassified
S1.002	S60.3	525	0.996	1.047			0	1.039	Unclassified
S1.003	S60.4	525	0.882	0.996	Unclassified	1500	0	0.996	Unclassified
S2.000	S64.1	300	0.857	1.025	Unclassified	1200	0	1.012	Unclassified
S1.004	S60.5	525	0.882	1.055	Unclassified	1500	0	0.882	Unclassified
S3.000	S61.1	300	0.807	1.250	Unclassified	1200	0	1.250	Unclassified
S3.001	S61.2	375	0.807	0.859	Unclassified	1350	0	0.807	Unclassified
S3.002	S61.3	450	0.859	1.042	Unclassified	1350	0	0.859	Unclassified
S3.003	S61.4	450	1.011	1.146	Unclassified	1350	0	1.042	Unclassified
S3.004	S61.5	450	0.978	1.146	Unclassified	1350	0	1.146	Unclassified
S4.000	S62.1	375	0.750	0.950	Unclassified	1350	0	0.750	Unclassified
S4.001	S62.2	375	0.949	1.024	Unclassified	1350	0	0.949	Unclassified
S5.000	S63.1	375	0.750	0.975	Unclassified	1350	0	0.750	Unclassified
S5.001	S63.2	375	0.975	1.096	Unclassified	1350	0	0.975	Unclassified
S5.002	S63.4	375	0.945	1.096	Unclassified	1350	0	1.096	Unclassified
S3.005	S61.6	525	0.879	1.014	Unclassified	1500	0	1.014	Unclassified
S1.005	S60.6	600	0.984	1.355	Unclassified	1500	0	0.984	Unclassified
S1.006	S60.7	600	0.950	1.405	Unclassified	1500	0	1.405	Unclassified
S1.007	SOUTFALL	600	0.783	0.950	Unclassified	1500	0	0.950	Unclassified
S1.008	S21	375	0.761	1.008	Unclassified	1500	0	1.008	Unclassified

Free Flowing Outfall Details for Storm

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
S1.008	S	68.436	67.300	0.000	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Inlet Coefficient 0.800Hot Start Level (mm)0 Flow per Person per Day (l/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (l/s)0.000Output Interval (mins)1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Region Scotland and Ireland Return Period (years) 100 M5-60 (mm) 17.800

Clifton Scannell Emerson Associa	Page 9	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	L.
County Dublin		Micro
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Digiliada
Micro Drainage	Network 2017.1.2	

Synthetic Rainfall Details

Ratio R 0.323 Cv (Winter) 0.840 Profile Type Summer Storm Duration (mins) 30 Cv (Summer) 0.750

eefort Lod lackrock ounty Dubl ate 05/09/ ile Engine icro Drain <u>Hydro-Bra</u>	in 2019 14:0 Node_Netw age	4 ork_2.MDX 	Surface Designe Checked	d by Zvon by Conor 2017.1.2	twork 2 imir Salk Doherty	10	Micro Drainag
ounty Dubl ate 05/09/ ile Engine icro Drain	2019 14:0 Node_Netw age	ork_2.MDX Onlin	Designe Checked Network	d by Zvon by Conor 2017.1.2	imir Salk Doherty	10	
ate 05/09/ ile Engine icro Drain	2019 14:0 Node_Netw age	ork_2.MDX Onlin	Checked Network	by Conor 2017.1.2	Doherty	10	
ile Engine icro Drain	Node_Netw age	ork_2.MDX Onlin	Checked Network	by Conor 2017.1.2	Doherty	10	
icro Drain	age		Network	2017.1.2			Diamay
					<u>rm</u>		
<u>Hydro-Bra</u>	ke® Optim		<u>ne Control</u>	<u>s for Stor</u>	<u>rm</u>		
<u>Hydro-Bra</u>	ke® Optim	um Manhole					
			e: SOUTFAL	L, DS/PN:	s1.007,	Volume (m	1 ³): 5.0
		Ur	nit Referenc	e MD-SHE-01	96-1940-100	0-1940	
			sign Head (m			1.000	
		Desig	gn Flow (l/s Flush-Flo		Cal	19.4 culated	
				e Minimise			
		_	Applicatio		S	Surface	
			ımp Availabl Diameter (mm			Yes 196	
			ert Level (m			67.450	
		-	Diameter (mm			225	
	Suggest		Diameter (mm			1500	
	D	Control	(Calculated)	Head (m) H	19.4		
	De	esign Poinc	(Calculated) Flush-Flo ^m		19.4		
			Kick-Flo®	0.720	16.6		
invalidated			then these s				
			low (l/s) De				
0.100 0.200	6.8 18.3	1.200 1.400	21.2 22.8	3.000 3.500	32.8 35.3	7.000 7.500	49.4 51.1
0.300	19.3	1.600	24.3	4.000	37.7	8.000	52.7
0.400	19.3	1.800	25.7	4.500	39.9	8.500	54.3
0.500 0.600	19.0 18.4	2.000 2.200	27.0 28.3	5.000 5.500	42.0 44.0	9.000 9.500	55.8 57.3
0.800	17.5	2.200	20.3	6.000	44.0	9.000	57.5
1.000	19.4	2.600	30.6	6.500	47.7		
	I						

Clifton Scannell Emerson Associa	Page 11	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 2	L.
County Dublin		Micro
Date 05/09/2019 14:04	Designed by Zvonimir Salkic	
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Tank or Pond Manhole: SOUTFALL, DS/PN: S1.007

Invert Level (m) 67.450

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1582.0 1.550 3178.0

<u>Manhole Headloss for Storm</u>

PN	US/MH Name	US/MH Headloss
S1.000	S60.1	0.500
S1.001	S60.2	0.500
S1.002	S60.3	0.500
S1.003	S60.4	0.500
S2.000	S64.1	0.500
S1.004	S60.5	0.500
S3.000	S61.1	0.500
S3.001	S61.2	0.500
S3.002	S61.3	0.500
S3.003	S61.4	0.500
S3.004	S61.5	0.500
S4.000	S62.1	0.500
S4.001	S62.2	0.500
S5.000	S63.1	0.500
S5.001	S63.2	0.500
S5.002	S63.4	0.500
S3.005	S61.6	0.500
S1.005	S60.6	0.500
S1.006	S60.7	0.500
S1.007	SOUTFALL	0.500
S1.008	S21	0.500

	.ifton Scannell Emerson Associates						1	Page 12		
Seefort	Lodge	Castledaw	son	. Engir	Enginenode Clonee					
Blackroc	ck			Surfa	Surface Water Network 2					
County D	Dublin							Micro		
Date 05/	/09/2019	14:04		Desig	gned by Zvoni	mir Salk	LC	Drainag		
File EngineNode_Network_2.MDX				Check	Checked by Conor Doherty					
Aicro Dr	cainage			Netwo	Network 2017.1.2					
<u>5 year</u>	Return	Period Su	mmary c		ical Results Storm	by Maxim	um Level	(Rank 1)		
	H nole Head. Dul Sewage Num N	Hot Star ot Start Le loss Coeff e per hecta uber of Inpu Jumber of Or	n Factor t (mins) vel (mm) (Global) re (l/s) nt Hydrog line Cor fline Cor	1.000 0 0.500 F 0.000 graphs 0 ntrols 1 ntrols 0	on Criteria Additional Flo MADD Facto Flow per Person Number of Stor Number of Time Number of Real	or * 10m³/h Inlet Coe per Day (1 age Struct /Area Diag	na Storage efficcient ./per/day) ures 1 rams 0	e 2.000 t 0.800		
		Rainfall Me Ree M5-60	odel gion Scc		infall Details FSR F Nd Ireland Cv (S 17.800 Cv (N		750			
	Ma	rain for Fl	ood Risk	Warning	(mm) 300.0	DVD Stati	IS OFF			
				ysis Tim	estep Fine Ine tatus ON					
	Returr	Pro	Anal ofile(s) (mins) (years)	ysis Tim DTS S 15, 30,	estep Fine Ine	Summer a 360, 480, 5	ns OFF nd Winter			
	Returr	Pro Duration(s)	Anal ofile(s) (mins) (years) ange (%)	ysis Tim DTS S 15, 30,	estep Fine Ine tatus ON	ertia Statu Summer a 360, 480, 5 1	nd Winter 960, 1440 , 30, 100 0, 10, 10			
PN	Returr	Pro Duration(s)	Anal ofile(s) (mins) (years) ange (%) Return	ysis Tim DTS S 15, 30,	estep Fine Ine tatus ON 60, 120, 240,	ertia Statu Summer a 360, 480, 5 1	nd Winter 960, 1440 , 30, 100 0, 10, 10) Overflow		
PN 51.000	Returr US/MH	Pro Duration(s) h Period(s) Climate Cha	Anal ofile(s) (mins) (years) ange (%) Return Period	ysis Tim DTS S 15, 30, Climate	estep Fine Ine tatus ON 60, 120, 240, First (X)	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001	Returr US/MH Name S60.1 S60.2	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002	Returr US/MH Name \$60.1 \$60.2 \$60.3	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003	Returr US/MH Name \$60.1 \$60.2 \$60.3 \$60.4	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003	Returr US/MH Name \$60.1 \$60.2 \$60.3 \$60.4	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004	Returr US/MH Name \$60.1 \$60.2 \$60.3 \$60.4 \$64.1 \$60.5	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S60.5 S61.1 S61.2 S61.3	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S60.5 S61.1 S61.2 S61.3 S61.4	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S60.5 S61.1 S61.2 S61.2 S61.3 S61.4 S61.5 S62.1	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000 S4.001	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000 S4.001 S5.000	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>estep Fine Ine tatus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000 S4.001	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000 S4.001 S5.000	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4	Pro Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, (Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005 \$1.006	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S62.2 S63.1 S63.2 S63.4 S61.6 S60.6 S60.7	Proc Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	Bestep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Sum	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005 \$1.006	Returr US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S61.6 S60.7 SOUTFALL	Proc Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Anal ofile(s) (mins) (years) ange (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	ysis Tim DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	estep Fine Ine tatus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	Summer a 360, 480, 5 1 First (Y)	nd Winter 960, 1440 , 30, 100 0, 10, 10 First (Z) Overflow		

Clifton Scannell Emerson Associates			
Seefort Lodge Castledawson	Enginenode Clonee		
Blackrock	Surface Water Network 2	<u> </u>	
County Dublin		Micro	
Date 05/09/2019 14:04	Designed by Zvonimir Salkic		
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Drainage	
Micro Drainage	Network 2017.1.2		

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S60.1	68.628	-0.197	0.000	0.56		74.1	OK	
S1.001	S60.2	68.496	-0.201	0.000	0.63		123.9	OK	
S1.002	S60.3	68.432	-0.129	0.000	0.62		112.8	OK	
S1.003	S60.4	68.401	-0.098	0.000	0.65		122.8	OK	
S2.000	S64.1	68.380	-0.208	0.000	0.20		12.0	OK	
S1.004	S60.5	68.363	-0.056	0.000	0.68		139.2	OK	
S3.000	S61.1	68.955	-0.115	0.000	0.62		38.3	OK	
S3.001	S61.2	68.600	-0.193	0.000	0.46		42.6	OK	
S3.002	S61.3	68.551	-0.190	0.000	0.58		82.4	OK	
S3.003	S61.4	68.488	-0.070	0.000	0.71		97.1	OK	
S3.004	S61.5	68.440	-0.014	0.000	0.99		92.5	OK	
S4.000	S62.1	68.605	-0.195	0.000	0.41		40.5	OK	
S4.001	S62.2	68.437	-0.144	0.000	0.64		61.0	OK	
S5.000	S63.1	68.691	-0.159	0.000	0.56		54.6	OK	
S5.001	S63.2	68.524	-0.102	0.000	0.86		81.0	OK	
S5.002	S63.4	68.441	-0.063	0.000	0.88		73.6	OK	
S3.005	S61.6	68.394	0.008	0.000	1.14		216.6	SURCHARGED	
S1.005	S60.6	68.263	0.071	0.000	1.47		352.7	SURCHARGED	
S1.006	S60.7	68.112	0.040	0.000	2.03		347.1	SURCHARGED	
S1.007	SOUTFALL	67.840	-0.210	0.000	0.06		19.3	OK	
S1.008	S21	67.477	-0.248	0.000	0.25		19.3	OK	

Clifton	Scannel	l Emerson	Associa	ates			Pá	age 14	
Seefort	Lodge	Castledaws	son	• Enginenode Clonee Surface Water Network 2					
Blackro	ck			Surfa	ce Water Netw	ork 2	2	1.	
County i	Dublin						N	Aicco	
Date 05	/09/2019	9 14:04		Desig	ned by Zvonin	nir Salki	C I		
File En	gineNode	e_Network_2	2.MDX	Check	ed by Conor I	Oherty		Irainage	
Micro D	rainage			Netwo	rk 2017.1.2				
<u>30 year</u>	Return	Period Su	mmary o		ical Results Storm	<u>by Maxim</u>	um Level	(Rank 1)	
	H hole Head oul Sewag Nur N Nu	Hot Start ot Start Lev loss Coeff (e per hectar nber of Inpu Number of On umber of Off Rainfall Mc Rec M5-60 (n Factor (mins) vel (mm) (Global) t Hydrog: line Cont line Cont <u>Synth</u> odel gion Scot (mm)	1.000 0 0.500 F 0.000 raphs 0 trols 1 trols 0 <u>etic Rai</u>	n Criteria Additional Flo MADD Facto low per Person Number of Stora Number of Time/ Number of Real <u>Infall Details</u> FSR R d Ireland Cv (S 17.800 Cv (W (mm) 300.0	r * 10m³/h Inlet Coe per Day (1 Age Structu Area Diagn Time Contr atio R 0.3 ummer) 0.7 inter) 0.8	a Storage ffiecient /per/day) mres 1 cams 0 cols 0 23 50 40	2.000 0.800	
			лпату		estep Fine Ine	rtia Statu	s OFF		
	Return		file(s) (mins) (years)	DTS S1	60, 120, 240, 3	Summer ar 60, 480, 9 5,	nd Winter		
PN	Return US/MH Name	Duration(s) n Period(s)	file(s) (mins) (years) nge (%) Return	DTS Si 15, 30, Climate	tatus ON 60, 120, 240, 3 First (X)	Summer ar 60, 480, 5 5, 10	nd Winter 960, 1440 30, 100	Overflow Act.	
PN	US/MH Name	Duration(s) n Period(s) Climate Cha Storm	file(s) (mins) (years) nge (%) Return Period	DTS Si 15, 30, Climate Change	<pre>tatus ON 60, 120, 240, 3 First (X) Surcharge</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000	US/MH Name S60.1	Duration(s) n Period(s) Climate Cha Storm 15 Winter	file(s) (mins) (years) nge (%) Return Period 30	DTS Si 15, 30, Climate Change +10%	<pre>tatus ON 60, 120, 240, 3 First (X) Surcharge 30/15 Winter</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
	US/MH Name	Duration(s) n Period(s) Climate Cha Storm	file(s) (mins) (years) nge (%) Return Period 30 30	DTS Si 15, 30, Climate Change	<pre>tatus ON 60, 120, 240, 3 First (X) Surcharge</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001	US/MH Name S60.1 S60.2 S60.3 S60.4	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30	DTS Si 15, 30, Climate Change +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
<pre>S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, (Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000 S4.001	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 First (X) Surcharge 30/15 Winter 30/15 Summer 100/15 Summer 30/15 Summer 30/</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
S1.000 S1.001 S1.002 S1.003 S2.000 S1.004 S3.000 S3.001 S3.002 S3.003 S3.004 S4.000 S4.001 S5.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, (Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 50 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 120, 3 60, 120, 240, 120, 3 60, 120, 240, 120, 3 60, 120, 240, 120, 3 60, 120, 240, 120, 3 60, 120, 240, 120, 3 60, 120, 120, 3 60, 120, 120, 120, 3 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S61.6	Duration(s) n Period(s) Climate Cha Storm 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, Climate Change +10%	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 50,15 Winter 30/15 Summer 30/15 Su</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S61.6 S60.6	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, 15, 30, Climate Change +10% +	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 50/15 Winter 30/15 Summer 30/15 Su</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005 \$1.006	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S61.6 S60.6 S60.7	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, 15, 30, Climate Change +10% +	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 50/15 Winter 30/15 Summer 30/15 Su</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005 \$1.006	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S61.6 S60.6 S60.7 SOUTFALL	Duration(s) n Period(s) Climate Cha 15 Winter 15 Winter	file(s) (mins) (years) nge (%) Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	DTS Si 15, 30, 15, 30, Climate Change +10% +	<pre>tatus ON 60, 120, 240, 3 60, 120, 240, 3 60, 120, 240, 3 50/15 Winter 30/15 Summer 30/15 Su</pre>	Summer ar 60, 480, 5, 10 First (Y)	nd Winter 960, 1440 30, 100 9, 10, 10 First (Z)		

Clifton Scannell Emerson Associa	Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Water Network 2	<u> </u>						
County Dublin		Micro						
Date 05/09/2019 14:04	Designed by Zvonimir Salkic							
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Drainage						
Micro Drainage	Network 2017.1.2	·						

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)			Overflow (1/s)		Status	Level Exceeded
EN	Name	(111)	(III)	(ш)	cap.	(1/5)	(1/5)	Status	Exceeded
S1.000	S60.1	68.918	0.093	0.000	0.80		107.1	SURCHARGED	
S1.001	S60.2	68.886	0.189	0.000	0.91		179.5	SURCHARGED	
S1.002	S60.3	68.839	0.278	0.000	0.81		146.3	SURCHARGED	
S1.003	S60.4	68.798	0.299	0.000	0.84		158.3	SURCHARGED	
S2.000	S64.1	68.752	0.164	0.000	0.28		16.7	SURCHARGED	
S1.004	S60.5	68.741	0.323	0.000	0.92		188.7	SURCHARGED	
S3.000	S61.1	69.036	-0.034	0.000	0.92		56.6	OK	
S3.001	S61.2	68.893	0.100	0.000	0.55		50.8	SURCHARGED	
S3.002	S61.3	68.871	0.130	0.000	0.80		114.6	SURCHARGED	
S3.003	S61.4	68.827	0.269	0.000	1.01		138.7	SURCHARGED	
S3.004	S61.5	68.749	0.296	0.000	1.40		131.0	SURCHARGED	
S4.000	S62.1	68.800	0.000	0.000	0.61		59.7	OK	
S4.001	S62.2	68.764	0.183	0.000	0.82		78.5	SURCHARGED	
S5.000	S63.1	68.900	0.050	0.000	0.78		76.1	SURCHARGED	
S5.001	S63.2	68.851	0.226	0.000	1.09		103.3	SURCHARGED	
S5.002	S63.4	68.757	0.253	0.000	1.09		91.2	SURCHARGED	
S3.005	S61.6	68.708	0.322	0.000	1.50		285.0	SURCHARGED	
S1.005	S60.6	68.525	0.333	0.000	1.98		473.0	SURCHARGED	
S1.006	S60.7	68.245	0.173	0.000	2.77		473.7	SURCHARGED	
S1.007	SOUTFALL	68.014	-0.036	0.000	0.06		19.3	OK	
S1.008	S21	67.477	-0.248	0.000	0.25		19.3	OK	

		l Emerson						Page 16
Seefort	Lodge	Castledaw	son	. Engir				
Blackroo	ck			Surfa	ace Water Net	work 2		4
County I	Dublin							
_	/09/2019	14:04		Desid	ned by Zvoni	nir Salk	ic	MICLO
		Network	2 MDX	-	and by Conor			Drainaq
Micro Di					ork 2017.1.2	Doniercy		
	Lainage			INCOME	JIR 2017.1.2			
<u>100 ye</u>	<u>ar Retur</u>	<u>n Period</u>	Summar	-	itical Result r Storm	<u>ts by Max</u>	<u>timum Le</u>	evel (Rank
	H nole Head oul Sewage Num N	Hot Star ot Start Le loss Coeff e per hecta uber of Inpu jumber of Or	n Factor t (mins) vel (mm) (Global) re (l/s) at Hydrog aline Cor	1.000 0 0.500 F 0.000 graphs 0 ntrols 1	on Criteria Additional Flo MADD Facto Tlow per Person Number of Stor Number of Time Number of Real	or * 10m³/l Inlet Coo per Day (1 age Struct /Area Diag	na Storag effiecien L/per/day ures 1 rams 0	ge 2.000 nt 0.800
	100			.101010 0	Number of Real	111110 00110	1015 0	
				hetic Ra	infall Details			
		Rainfall M		+land an		atio R 0.		
		Re M5-60		iciand an	d Ireland Cv (8 17.800 Cv (0			
			. ,			,	-	
	Ma	rgin for Fl	ood Risk	Warning	(mm) 300.0	DVD Stati	is OFF	
			Anal		estep Fine Ine			
			Anal		estep Fine Ine tatus ON			
			Anal					
			ofile(s)	DTS S	tatus ON	ertia Statu Summer a	is OFF nd Winte:	
	Poturo	Duration(s)	ofile(s)) (mins)	DTS S 15, 30,		srtia Statu Summer a 360, 480,	15 OFF nd Winte: 960, 144	0
		Duration(s) Period(s)	ofile(s)) (mins) (years)	DTS S 15, 30,	tatus ON	srtia Statu Summer a 360, 480, 5	nd Winte 960, 144 , 30, 10	0 0
		Duration(s)	ofile(s)) (mins) (years)	DTS S 15, 30,	tatus ON	srtia Statu Summer a 360, 480, 5	15 OFF nd Winte: 960, 144	0 0
		Duration(s) Period(s)	ofile(s)) (mins) (years)	DTS S 15, 30,	tatus ON	srtia Statu Summer a 360, 480, 5	nd Winte 960, 144 , 30, 10	0 0
	US/MH	Duration(s) n Period(s) Climate Cha	ofile(s)) (mins) (years) ange (%) Return	DTS S 15, 30, Climate	tatus ON 60, 120, 240, First (X)	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
PN		Duration(s) Period(s)	ofile(s)) (mins) (years) ange (%) Return	DTS S	tatus ON 60, 120, 240,	rtia Statu Summer a 360, 480, 5 1	nd Winte: 960, 144 , 30, 10 0, 10, 1	0 0 Z) Overflow
PN S1.000	US/MH	Duration(s) n Period(s) Climate Cha	ofile(s) (mins) (years) ange (%) Return Period	DTS S 15, 30, Climate	tatus ON 60, 120, 240, First (X)	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
	US/MH Name	Duration(s) n Period(s) Climate Cha Storm	ofile(s)) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change	tatus ON 60, 120, 240, First (X) Surcharge	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
S1.000 S1.001 S1.002	US/MH Name S60.1 S60.2 S60.3	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter	<pre>ofile(s) (mins) (years) ange (%) Return Period 100 100 100</pre>	DTS S 15, 30, Climate Change +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
S1.000 S1.001 S1.002 S1.003	US/MH Name S60.1 S60.2 S60.3 S60.4	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	<pre>bofile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100</pre>	DTS S 15, 30, Climate Change +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	<pre>bofile(s)) (mins) (years) ange (%) Return Period 100 100 100 100 100 100</pre>	DTS S 15, 30, Climate Change +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004	US/MH Name \$60.1 \$60.2 \$60.3 \$60.4 \$64.1 \$60.5	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	<pre>bofile(s)) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100</pre>	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter	<pre>bofile(s)) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 10</pre>	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter	ofile(s) (mins) (years) ange (%) Return Period 100	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Defile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 10	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Defile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 10	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter	Defile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 10	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005 \$1.006</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S61.6 S60.6 S60.7	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Defile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 10	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$1.004 \$3.000 \$3.001 \$3.002 \$3.003 \$3.004 \$4.000 \$4.001 \$5.000 \$5.001 \$5.002 \$3.005 \$1.005 \$1.006</pre>	US/MH Name S60.1 S60.2 S60.3 S60.4 S64.1 S60.5 S61.1 S61.2 S61.3 S61.4 S61.5 S62.1 S62.2 S63.1 S63.2 S63.4 S63.2 S63.4 S61.6 S60.7 SOUTFALL	Duration(s) Period(s) Climate Cha Storm 15 Winter 15 Winter	Defile(s) (mins) (years) ange (%) Return Period 100 100 100 100 100 100 100 100 100 10	DTS S 15, 30, Climate Change +10% +10	tatus ON 60, 120, 240, First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	rtia Statu Summer a 360, 480, 5 1 First (Y)	nd Winte: 960, 144 , 30, 10 0, 10, 1 First (2	0 0 Z) Overflow

Clifton Scannell Emerson Associa	Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Water Network 2	<u> </u>						
County Dublin		Micro						
Date 05/09/2019 14:04	Designed by Zvonimir Salkic							
File EngineNode_Network_2.MDX	Checked by Conor Doherty	Drainage						
Micro Drainage	Network 2017.1.2							

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
s1.000	S60.1	69.564	0.739	0.000	0.89		119.0	FLOOD RISK	
S1.001	S60.2	69.515	0.818	0.000	1.07		210.7	FLOOD RISK	
S1.002	S60.3	69.435	0.875	0.000	1.07		194.2	FLOOD RISK	
S1.003	S60.4	69.380	0.881	0.000	1.13		211.8	FLOOD RISK	
S2.000	S64.1	69.301	0.713	0.000	0.24		14.5	FLOOD RISK	
S1.004	S60.5	69.285	0.867	0.000	1.27		258.5	FLOOD RISK	
S3.000	S61.1	69.666	0.596	0.000	1.07		65.8	SURCHARGED	
S3.001	S61.2	69.511	0.718	0.000	0.64		59.6	FLOOD RISK	
S3.002	S61.3	69.480	0.739	0.000	0.85		121.7	FLOOD RISK	
S3.003	S61.4	69.382	0.825	0.000	1.24		170.0	FLOOD RISK	
S3.004	S61.5	69.259	0.806	0.000	1.71		159.6	SURCHARGED	
S4.000	S62.1	69.339	0.539	0.000	0.71		69.8	FLOOD RISK	
S4.001	S62.2	69.290	0.709	0.000	0.89		85.4	FLOOD RISK	
S5.000	S63.1	69.523	0.673	0.000	0.89		87.5	FLOOD RISK	
S5.001	S63.2	69.427	0.801	0.000	1.32		125.0	FLOOD RISK	
S5.002	S63.4	69.282	0.778	0.000	1.37		114.9	SURCHARGED	
S3.005	S61.6	69.204	0.818	0.000	1.90		360.2	FLOOD RISK	
S1.005	S60.6	68.901	0.709	0.000	2.62		627.0	FLOOD RISK	
S1.006	S60.7	68.413	0.341	0.000	3.66		627.3	SURCHARGED	
S1.007	SOUTFALL	68.167	0.117	0.000	0.06		19.3	SURCHARGED	
S1.008	S21	67.477	-0.248	0.000	0.25		19.3	OK	

lifton S	0 0 -	<u> </u>	4.1 - 2	o c				11					
eefort L	2	Cas	stred	awson .		-				~			
lackrock					Sui	rface	Wate	er Net	work	3		2	~ .
ounty Du	ıblin											Mi	
ate 05/0	9/20	19 14	1:06		Des	signed	l by	Zvoni	mir :	Salk	ic		
ile Engi	neNo	de_Ne	etwor	k_3.MDX	Che	ecked	by C	Conor	Dohe	rty		DI	ainag
icro Dra	inage	е			Net	work	2017	1.1.2					
	C.	STORM	I SEWI	ER DESI	GN by ·	the Mo	odifi	ied Ra	ation	al M	ethoo	ł	
	_				_ .qn Cri							-	
			Di		-					DD			
			_	pe Sizes									
		Retur		SR Rainfa iod (yea		1 - Sco 100	otlan	d and .	Irelar	nd		PIMP (8) 10
		Necui	in rer	· -	mm) 17.			Add F	low /	Clim	ate Ch		
					or 0.							eight (m	
				all (mm/		50					-	eight (m	
Maximum T	ime o:				,				-	-		ition (m	
	Vo			.ge (l/s/ .noff Coe							-	1y (m/s .on (1:X	
	v0.	- 41115 - 1	I\U					-	C 101	0PCTI			., 50
				Des	igned w	ith Lev	vel S	offits					
				<u>Time</u>	Area D)iagra	m fo	<u>r Sto</u>	rm				
		Т	ime	Area T	ime Ar	ea T:	ime	Area	Time	Ar	ea		
		_	ime ins)		ime Ar ins) (h			Area (ha)	Time (mins				
		_	ins)		ins) (h 4-8 2.0	(m : 022	ins) 8-12	(ha) 1.164	(mins 12-1) (h	a)		
		_	ins)	(ha) (m 0.285 Total A Total	ins) (h 4-8 2.0 rea Cont Pipe Vo	a) (m: 022 8 cributi olume (ins) 8-12 .ng (h m³) =	(ha) 1.164 ha) = 3 = 240.2	(mins 12-1 5.552) (h	a)		
		(m	0-4	(ha) (m 0.285 Total A Total <u>Networ</u>	ins) (h 4-8 2.0 rea Cont Pipe Vo <u>k Desi</u> o	na) (m: 022 8 cributi olume (gn Tak	ins) 8-12 .ng (h m³) =	(ha) 1.164 1.164 = 240.2 for St	(mins 12-1 3.552 80) (h	a) 081		
	ngth (m)	(m	0-4	(ha) (m 0.285 Total A Total A <u>Networ</u> a I.Area	ins) (h 4-8 2.0 rea Cont Pipe Vo	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	ins) 8-12 .ng (h (m ³) = ole f	(ha) 1.164 ha) = 3 = 240.2	(mins 12-1 5.552) (h	a) 081	ion Type	e Auto Desig
((m)	(m Fall (m)	0-4 Slope (1:X)	<pre>(ha) (m 0.285 Total A Total A Total <u>Networ 0 I.Area (ha) </u></pre>	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vo k Desig T.E. (mins)</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	<pre>ins) 8-12 .ng (h .ng (h .ng) =</pre>	(ha) 1.164 1.164 aa) = 3 = 240.2 Eor St k (mm)	(mins 12-1 3.552 380 <u>corm</u> HYD) (h 6 0.0 DIA (mm)	a) 081 Secti		Desig
	(m) .286	(m Fall (m) 0.210	<pre>Slope (1:X) 450.0</pre>	(ha) (m 0.285 Total A Total A <u>Total</u> <u>Networ</u> e I.Area (ha) 0 0.201	<pre>ins) (h</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	<pre>ins) 8-12 .ng (h .ng (h .ng) =</pre>	(ha) 1.164 ha) = 3 = 240.2 for St k	(mins 12-1 3.552 380 20rm HYD SECT) (h 6 0.0 DIA (mm) 450	a) 081 Secti Pipe/	Conduit Conduit	Desig
S1.000 94 S1.001 26 S1.002 60	(m) .286 .441 .877	Fall (m) 0.210 0.059 0.135	Slope (1:X) 450.0 450.0	(ha) (m 0.285 Total A Total A Total Networ e I.Area (ha) 0 0.201 0 0.063 0 0.466	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vo k Desid T.E. (mins) 5.00 0.00 0.00</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	<pre>ins) 8-12 .ng (h .mg (h .m³) =</pre>	(ha) 1.164 1.1	(mins 12-1 3.552 380 20rm HYD SECT 0) (h 6 0.0 DIA (mm) 450 450 450	<pre>a) 33 Secti Pipe/ Pipe/ Pipe/ Pipe/</pre>	Conduit Conduit Conduit	Desig
S1.000 94 S1.001 26 S1.002 60	(m) .286 .441 .877	Fall (m) 0.210 0.059 0.135	Slope (1:X) 450.0 450.0	(ha) (m 0.285 Total A Total A Total Networ e I.Area (ha) 0 0.201 0 0.063 0 0.466	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vo k Desid T.E. (mins) 5.00 0.00</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	<pre>ins) 8-12 .ng (h .mg (h .m³) =</pre>	(ha) 1.164 1.164 aa) = 3 = 240.2 for St k (mm) 0.600 0.600	(mins 12-1 3.552 80 <u>corm</u> HYD SECT 0 0) (h 6 0.0 DIA (mm) 450 450 450	<pre>a) 33 Secti Pipe/ Pipe/ Pipe/ Pipe/</pre>	Conduit/Conduit	Desig
S1.000 94 S1.001 26 S1.002 60 S1.003 60	(m) .286 .441 .877 .861	(m Fall (m) 0.210 0.059 0.135 0.122	Slope (1:X) 450.0 450.0 500.0	(ha) (m 0.285 Total A Total A Total A Total 0.285 A 0.285 Total A Total 0.201 0.201 0.201 0.201 0.203 0.466 0.438	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vo k Desid T.E. (mins) 5.00 0.00 0.00 0.00</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	<pre>ins) 8-12 .ng (h .ng (h .m³) =</pre>	(ha) 1.164 1.164 aa) = 3 = 240.2 for St k (mm) 0.600 0.600 0.600 0.600	(mins 12-1 3.552 380 20rm HYD SECT 0 0 0 0) (h 6 0.0 7 (mm) 450 450 450 525	<pre>a) Secti Pipe/ Pipe/ Pipe/ Pipe/</pre>	/Conduit /Conduit /Conduit /Conduit	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63	(m) .286 .441 .877 .861	(m Fall (m) 0.210 0.059 0.135 0.122 0.169	Slope (1:X) 450.0 450.0 500.0 375.0	(ha) (m 0.285 Total A Total A Total Networ e I.Area (ha) 0 0.201 0 0.201 0 0.201 0 0.466 0 0.438 0 0.190	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vo k Desid T.E. (mins) 5.00 0.00 0.00</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas	<pre>ins) 8-12 .ng (h .mg (h .mg) =</pre>	(ha) 1.164 1.1	(mins 12-1 3.552 80 <u>CORM</u> HYD SECT 0 0 0) (h 6 0.0 7 (mm) 450 450 450 525 375	a))81 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	(Conduit (Conduit (Conduit (Conduit	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63	(m) .286 .441 .877 .861	(m Fall (m) 0.210 0.059 0.135 0.122 0.169	Slope (1:X) 450.0 450.0 500.0 375.0	(ha) (m 0.285 Total A Total A Total A Networ 0.201 0.201 0.063 0.466 0.438 0.190 0.204	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 0.00 5.00 0.00</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas Flow (<pre>ins) 8-12 .ng (h (m³) =</pre>	(ha) 1.164 1.1	(mins 12-1 3.552 80 <u>CORM</u> HYD SECT 0 0 0 0) (h 6 0.0 7 (mm) 450 450 450 525 375	a))81 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	/Conduit /Conduit /Conduit /Conduit	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63	(m) .286 .441 .877 .861	(m Fall (m) 0.210 0.059 0.135 0.122 0.169	Slope (1:X) 450.0 450.0 500.0 375.0	(ha) (m 0.285 Total A Total A Total A Networ 0.201 0.201 0.063 0.466 0.438 0.190 0.204	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vo k Desid T.E. (mins) 5.00 0.00 0.00 5.00</pre>	a) (m: 022 8 cributi blume (<u>gn Tak</u> Bas Flow (<pre>ins) 8-12 .ng (h (m³) =</pre>	(ha) 1.164 1.1	(mins 12-1 3.552 80 <u>CORM</u> HYD SECT 0 0 0 0) (h 6 0.0 7 (mm) 450 450 450 525 375	a))81 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	(Conduit (Conduit (Conduit (Conduit	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63	(m) .286 .441 .877 .861 .437 .831 Rai:	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 n I	<pre>Slope (1:X) 450.0 450.0 450.0 375.0 375.0 </pre>	(ha) (m 0.285 Total A Total A Total Networ 0 0.201 0 0.201 0 0.201 0 0.203 0 0.466 0 0.438 0 0.190 0 0.204 Net US/IL E	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 etwork I.Area</pre>	a) (m: 022 8 cributi olume (gn Tak Bas Flow (Resul Σ Ba	<pre>ins) ins) 8-12 .ng (h fm³) = 01e f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>(ha) (ha) 1.164 1.164 aa) = 3 = 240.2 for St k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 able Foul</pre>	(mins 12-1 3.552 380 <u>Corm</u> HYD SECT 0 0 0 0 0 0 0) (h 6 0.0 6 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>a) D81 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel</pre>	(Conduit (Conduit (Conduit (Conduit (Conduit (Conduit	Desig
S1.000 94 S1.001 26 S1.002 60 S1.003 60 S2.000 63 S2.001 70	(m) .286 .441 .877 .861 .437 .831	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 n I	Slope (1:X) 450.0 450.0 500.0 375.0 375.0	(ha) (m 0.285 Total A Total A Total Networ e I.Area (ha) 0 0.201 0 0.201 0 0.201 0 0.466 0 0.438 0 0.190 0 0.204 Net	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 </pre>	a) (m: 022 8 cributi olume (gn Tak Bas Flow (Resul Σ Ba	<pre>ins) ins) 8-12 .ng (h fm³) = 01e f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>(ha) (ha) 1.164 1.164 aa) = 3 = 240.2 for St k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 able</pre>	(mins 12-1 3.552 380 <u>Corm</u> HYD SECT 0 0 0 0 0) (h 6 0.0 6 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>a) D81 D81 Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/</pre>	(Conduit (Conduit (Conduit (Conduit (Conduit (Conduit	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63 \$2.001 70 PN \$1.000	(m) .286 .441 .877 .861 .437 .831 Rai: (mm/h 50.	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 0.189 n I nr) (m	<pre>slope (1:x) 450.0 450.0 450.0 375.0 375.0 ins) 6.65</pre>	(ha) (m (ha) (m 0.285 Total A Total A Total 0.201 0.201 0.201 0.201 0.201 0.203 0.466 0.438 0.190 0.204 <u>Net</u> (m) 67.660	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 etwork I.Area (ha) 0.201</pre>	(m: 022 8 cributi olume (<u>gn Tak</u> Bas Flow (<u>Resul</u> E Ba Flow	<pre>ins) ins) 8-12 .ng (h fm³) = 01e 1 3e (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>(ha) (ha) 1.164 1.16 1.16</pre>	(mins 12-1 3.552 380 50rm HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) (h 6 0.0 6 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>a) Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 0.95</pre>	/Conduit /Conduit /Conduit /Conduit /Conduit /Conduit Cap (l/s) 151.4	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63 \$2.001 70 PN \$1.000 \$1.001	(m) .286 .441 .877 .861 .437 .831 Rai: (mm/h 50. 50.	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 n I nr) (m 0.00 .00	<pre>slope (1:x) 450.0 450.0 450.0 375.0 375.0 6.65 7.11</pre>	(ha) (m (ha) (m 0.285 Total A Total A Total Networ 0.201 0.201 0.201 0.201 0.201 0.204 0.466 0.438 0.190 0.204 Net (m) 67.660 67.450	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 c.00 c</pre>	a) (m: 022 8 cributi olume (gn Tak Bas Flow (Resul E Ba Flow	<pre>ins) ins) 8-12 .ng (h fm³) = 01e f 3e (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	(ha) 1.164 1.1	(mins 12-1 3.552 380 50rm HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) (h 6 0.0 6 0.0 10 10 450 450 450 525 375 375 375 375 375 5 10w (s) 0.0 0.0	a) 081 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 0.95 0.95	/Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63 \$2.001 70 PN \$1.000	(m) .286 .441 .877 .861 .437 .831 Rai: (mm/h 50.	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 n I nr) (m .00 .00	<pre>slope (1:x) 450.0 450.0 450.0 375.0 375.0 5.C. hins) 6.65 7.11 8.18</pre>	(ha) (m (ha) (m 0.285 Total A Total A Total 0.201 0.201 0.201 0.201 0.201 0.203 0.466 0.438 0.190 0.204 <u>Net</u> (m) 67.660	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 etwork I.Area (ha) 0.201</pre>	a) (m: 022 8 cributi olume (gn Tak Bas Flow (Resul E Ba Flow	<pre>ins) ins) 8-12 .ng (h fm³) = 01e 1 3e (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	(ha) 1.164 1.1	(mins 12-1 3.552 380 50rm HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) (h 6 0.0 6 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	a) 081 Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 0.95 0.95 0.95	/Conduit /Conduit /Conduit /Conduit /Conduit /Conduit Cap (l/s) 151.4	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63 \$2.001 70 PN \$1.000 \$1.001 \$1.002 \$1.003	(m) .286 .441 .877 .861 .437 .831 Rai: (mm/h 50. 50. 50.	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 n I nr) (m .00 .00 .00	<pre>slope (1:x) 450.0 450.0 450.0 375.0 375.0 5.C. hins) 6.65 7.11 8.18 9.20</pre>	(ha) (m (ha) (m 0.285 Total A Total A Total Networ 0.201 0.201 0.201 0.201 0.201 0.204 0.466 0.438 0.190 0.204 Net (m) 67.660 67.450 67.392 67.181	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 5.00 0.00 etwork I.Area (ha) 0.201 0.264 0.730 1.169</pre>	a) (m: 022 8 cributi olume (gn Tak Bas Flow (Resul E Ba Flow	<pre>ins) ins) 8-12 .ng (h fm³) = 01e f 3e (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>(ha) (ha) 1.164 1.1</pre>	(mins 12-1 3.552 380 50rm HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) (h 6 0.0 6 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	a) 081 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 0.95 0.95 0.95 0.99	/Conduit /Co	Desig
\$1.000 94 \$1.001 26 \$1.002 60 \$1.003 60 \$2.000 63 \$2.001 70 PN \$1.000 \$1.001 \$1.002	(m) .286 .441 .877 .861 .437 .831 Rai: (mm/h 50. 50. 50.	(m Fall (m) 0.210 0.059 0.135 0.122 0.169 0.189 0.189 n I nr) (m .00 .00 .00 .00	<pre>slope (1:x) 450.0 450.0 450.0 375.0 375.0 375.0 6.65 7.11 8.18 9.20 6.14</pre>	(ha) (m (ha) (m 0.285 Total A Total A Total Networ 0.201 0.201 0.201 0.201 0.201 0.204 0.466 0.438 0.190 0.204 Net (m) 67.660 67.450 67.392	<pre>ins) (h 4-8 2.0 rea Cont Pipe Vc k Desid T.E. (mins) 5.00 0.00 0.00 5.00 0.00 5.00 0.00 5.00 0.00 etwork I.Area (ha) 0.201 0.264 0.730</pre>	a) (m: 022 8 cributi olume (gn Tak Bas Flow (Resul E Ba Flow	<pre>ins) ins) 8-12 .ng (h fm³) = 01e f 3e (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>(ha) (ha) 1.164 1.1</pre>	(mins 12-1 3.552 380 50rm HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) (h 6 0.0 6 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	a) 081 Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 0.95 0.95 0.99 0.93	/Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit /Conduit	Desig

Clifton Scannell Emerson Associa	Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Water Network 3	L.						
County Dublin		Micro						
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainade						
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Diamaye						
Micro Drainage	Network 2017.1.2							

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S2.002	37.059	0.099	375.0	0.056	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S1.004	38.370	0.096	400.0	0.110	0.00	0.0	0.600	0	525	Pipe/Conduit	•
S3.000	49.714	0.199	249.8	0.223	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
	67.593			0.164	0.00		0.600	0		Pipe/Conduit	6
	56.340			0.155	0.00		0.600	0		Pipe/Conduit	6
S1.007	32.646	0.046	714.4	0.255	0.00	0.0	0.600	0	750	Pipe/Conduit	ď
S4.000	73.541	0.147	500.0	0.214	5.00	0.0	0.600	0	300	Pipe/Conduit	0
S4.001	52.670	0.132	400.0	0.197	0.00	0.0	0.600	0	375	Pipe/Conduit	- The second sec
S4.002	14.591	0.036	400.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ð
S5.000	66.291	0.166	400.0	0.000	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S5.001	56.817	0.142	400.0	0.000	0.00	0.0	0.600	0		Pipe/Conduit	ő
S4.003	9.541	0.024	400.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S1.008	8.670	0.012	750.0	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	ď
S1.009	78.996	0.100	790.0	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	ě

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S2.002	50.00	8.07	67.542	0.450	0.0	0.0	0.0	0.93	102.7	60.9	
S1.004	50.00	9.77	67.060	1.728	0.0	0.0	0.0	1.11	241.1	234.0	
S3.000	50.00	5.84	67.550	0.223	0.0	0.0	0.0	0.99	70.0	30.2	
S1.005 S1.006 S1.007	50.00 50.00 50.00	11.52	66.889 66.604 66.475	2.115 2.270 2.525	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.33	306.0 588.7 459.1	307.4	
S4.000 S4.001 S4.002	50.00 50.00 50.00	7.74	<mark>67.250</mark> 67.028 66.896	0.214 0.411 0.411	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.70 0.90 0.90	49.2 99.4 99.4	29.0 55.7 55.7	
S5.000 S5.001	50.00 50.00		<mark>67.018</mark> 66.852	0.000	0.0	0.0	0.0	0.90 0.90	99.4 99.4	0.0	
S4.003	50.00	8.18	66.710	0.411	0.0	0.0	0.0	0.90	99.4	55.7	
S1.008 S1.009	50.00 50.00		66.311 66.250	2.937 2.937	0.0 0.0	0.0 0.0	0.0		448.0 436.4		
			C	1982-201	7 XP Solut	tions					

Clifton Scannell Emerson Associa	lifton Scannell Emerson Associates								
Seefort Lodge Castledawson	Enginenode Clonee								
Blackrock	Surface Water Network 3	L.							
County Dublin		Micro							
Date 05/09/2019 14:06	Designed by Zvonimir Salkic								
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Drainage							
Micro Drainage	Network 2017.1.2								

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S6.000	65.003	0.173	375.7	0.215	5.00	0.0	0.600	0	375	Pipe/Conduit	0
S6.001	69.797	0.186	375.0	0.221	0.00	0.0	0.600	0	375	Pipe/Conduit	
S6.002	80.052	0.178	450.0	0.179	0.00	0.0	0.600	0	450	Pipe/Conduit	- Č
S6.003	16.895	0.088	192.0	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	<u> </u>
S6.004	57.261	0.100	572.6	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
S1.010	8.226	0.050	164.5	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	•

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S6.000	50.00	6.17	66.950	0.215	0.0	0.0	0.0	0.93	102.6	29.1
S6.001	50.00	7.42	66.777	0.436	0.0	0.0	0.0	0.93	102.7	59.0
S6.002	50.00	8.82	66.516	0.615	0.0	0.0	0.0	0.95	151.4	83.3
S6.003	50.00	9.01	66.338	0.615	0.0	0.0	0.0	1.46	232.8	83.3
S6.004	50.00	10.14	66.250	0.615	0.0	0.0	0.0	0.84	134.0	83.3
S1.010	50.00	13.58	66.150	3.552	0.0	0.0	0.0	2.18	962.7	481.0

Clifton Scannell Emerson Associa	Page 4	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Dialitada
Micro Drainage	Network 2017.1.2	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Back (m
70.1	69.450	1.790	Open Manhole	1350	s1.000	67.660	450				
70.2	69.450	2.000	Open Manhole	1350	S1.001	67.450	450	S1.000	67.450	450	
70.3	69.331	1.939	Open Manhole	1350	S1.002	67.392	450	S1.001	67.392	450	
70.4	68.821	1.640	Open Manhole	1500	S1.003	67.181	525	S1.002	67.256	450	
71.1	69.600	1.700	Open Manhole	1350	S2.000	67.900	375				
71.2	69.600	1.869	Open Manhole	1350	S2.001	67.731	375	S2.000	67.731	375	
71.3	69.600	2.058	Open Manhole	1350	S2.002	67.542	375	S2.001	67.542	375	
70.5	68.550	1.490	Open Manhole	1500	S1.004	67.060	525	S1.003	67.060	525	
								S2.002	67.443	375	
72.1	69.307	1.757	Open Manhole	1200	s3.000	67.550	300				
70.6	68.500	1.611	Open Manhole	1500	S1.005	66.889	600	S1.004	66.964	525	
								S3.000	67.351	300	
70.7	68.181	1.577	Open Manhole	1800	S1.006	66.604	750	S1.005	66.754	600	
70.8	68.150	1.675	Open Manhole	1800	s1.007	66.475	750	S1.006	66.475	750	
73.1	68.450	1.200	Open Manhole	1200	S4.000	67.250	300				
73.2	68.450	1.422	Open Manhole	1350	S4.001	67.028	375	S4.000	67.103	300	
73.3	68.450	1.554	Open Manhole	1350	S4.002	66.896	375	S4.001	66.896	375	
16	68.136	1.118	Open Manhole	1350	s5.000	67.018	375				
17	68.590	1.738	Open Manhole	1350	s5.001	66.852	375	S5.000	66.852	375	
73.4	68.100	1.390	Open Manhole	1350	s4.003	66.710	375	S4.002	66.860	375	
			_					S5.001	66.710	375	
70.9	68.300	1.989	Open Manhole	1800	S1.008	66.311	750	S1.007	66.429	750	
								S4.003	66.686	375	
20	68.350	2.100	Open Manhole	1800	s1.009	66.250	750	S1.008	66.300	750	
80.1	68.450	1.500	Open Manhole	1350	s6.000	66.950	375				
80.2	68.450	1.673	Open Manhole	1350	s6.001	66.777	375	s6.000	66.777	375	
80.3	68.400	1.884	Open Manhole	1350	s6.002	66.516	450	S6.001	66.591	375	
80.4	68.200	1.862	Open Manhole	1350	s6.003	66.338	450	S6.002	66.338	450	
80.5	68.350	2.100	Open Manhole	1350	s6.004	66.250	450	s6.003	66.250	450	
TFALL MH	68.350	2.200	Open Manhole	1800	s1.010	66.150	750	S1.009	66.150	750	
								S6.004	66.150	450	
	68.370	2.270	Open Manhole	0		OUTFALL		S1.010	66.100	750	

Manhole Schedules for Storm

Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee						
Blackrock	Surface Water Network 3	<u> </u>					
County Dublin		Micco					
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainage					
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Diamaye					
Micro Drainage	Network 2017.1.2						

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000 S1.001	0		70.1 70.2	69.450 69.450	<mark>67.660</mark> 67.450		Open Manhole Open Manhole	1350 1350
S1.002 S1.003	0 0		70.3 70.4		67.392 67.181		Open Manhole Open Manhole	1350 1500
S2.000 S2.001 S2.002	0 0 0	375	71.1 71.2 71.3		<mark>67.900</mark> 67.731 67.542	1.494	Open Manhole Open Manhole Open Manhole	1350 1350 1350
S1.004	0		70.5	68.550	67.060		Open Manhole	1500
S3.000 S1.005 S1.006	0 0 0	600	72.1 70.6 70.7		67.550 66.889 66.604	1.011	Open Manhole Open Manhole Open Manhole	1200 1500 1800
\$1.007 \$4.000	0	300	70.8	68.150 68.450	66.475 67.250	0.900	Open Manhole Open Manhole	1800 1200
S4.001 S4.002	0		73.2 73.3	68.450 68.450	67.028 66.896		Open Manhole Open Manhole	1350 1350

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	94.286	450.0	70.2	69.450	67.450	1.550	Open Manhole	1350
S1.001	26.441	450.0	70.3	69.331	67.392	1.489	Open Manhole	1350
S1.002	60.877	450.0	70.4	68.821	67.256	1.115	Open Manhole	1500
S1.003	60.861	500.0	70.5	68.550	67.060	0.965	Open Manhole	1500
S2.000	63.437	375.0	71.2	69.600	67.731	1.494	Open Manhole	1350
S2.001	70.831	375.0	71.3	69.600	67.542	1.683	Open Manhole	1350
S2.002	37.059	375.0	70.5	68.550	67.443	0.732	Open Manhole	1500
S1.004	38.370	400.0	70.6	68.500	66.964	1.011	Open Manhole	1500
S3.000	49.714	249.8	70.6	68.500	67.351	0.849	Open Manhole	1500
S1.005	67.593	500.0	70.7	68.181	66.754	0.827	Open Manhole	1800
S1.006	56.340	436.7	70.8	68.150	66.475	0.925	Open Manhole	1800
S1.007	32.646	714.4	70.9	68.300	66.429	1.121	Open Manhole	1800
S4.000	73.541	500.0	73.2	68.450	67.103	1.047	Open Manhole	1350
S4.001	52.670	400.0	73.3	68.450	66.896	1.179	Open Manhole	1350
S4.002	14.591	400.0	73.4	68.100	66.860	0.865	Open Manhole	1350
			0	01982-20	017 XP	Solutio	ns	

Clifton Scannell Emerson Associa	Page 6	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S5.000	0	375	16	68.136	67.018	0.743	Open Manhole	1350
S5.001	0	375	17	68.590	66.852	1.363	Open Manhole	1350
S4.003	0	375	73.4	68.100	66.710	1.015	Open Manhole	1350
S1.008	0	750	70.9	68.300	66.311	1.239	Open Manhole	1800
S1.009	0	750	20	68.350	66.250	1.350	Open Manhole	1800
S6.000	0	375	80.1	68.450	66.950	1.125	Open Manhole	1350
S6.001	0	375	80.2	68.450	66.777	1.298	Open Manhole	1350
S6.002	0	450	80.3	68.400	66.516	1.434	Open Manhole	1350
S6.003	0	450	80.4	68.200	66.338	1.412	Open Manhole	1350
S6.004	0	450	80.5	68.350	66.250	1.650	Open Manhole	1350
S1.010	0	750	OUTFALL MH	68.350	66.150	1.450	Open Manhole	1800

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S5.000	66.291	400.0	17	68.590	66.852	1.363	Open Manhole	1350
S5.001	56.817	400.0	73.4	68.100	66.710	1.015	Open Manhole	1350
S4.003	9.541	400.0	70.9	68.300	66.686	1.239	Open Manhole	1800
S1.008	8.670	750.0	20	68.350	66.300	1.300	Open Manhole	1800
S1.009	78.996	790.0	OUTFALL MH	68.350	66.150	1.450	Open Manhole	1800
S6.000	65.003	375.7	80.2	68.450	66.777	1.298	Open Manhole	1350
S6.001	69.797	375.0	80.3	68.400	66.591		Open Manhole	1350
S6.002	80.052	450.0	80.4	68.200	66.338	1.412	Open Manhole	1350
S6.003	16.895	192.0	80.5	68.350	66.250	1.650	Open Manhole	1350
S6.004	57.261	572.6	OUTFALL MH	68.350	66.150	1.750	Open Manhole	1800
S1.010	8.226	164.5		68.370	66.100	1.520	Open Manhole	0

Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee						
Blackrock	Surface Water Network 3	L.					
County Dublin		Micco					
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainage					
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Dialiage					
Micro Drainage	Network 2017.1.2						

<u>Area Summary for Storm</u>

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification	Grass	30	0.389	0.117	0.117
	Classification	Road	100	0.084	0.084	0.201
1.001	Classification	Road	100	0.063	0.063	0.063
1.002	Classification	Road	100	0.166	0.166	0.166
	Classification	Gravel	75	0.205	0.154	0.320
	Classification	Gravel	75	0.195	0.146	0.466
1.003	Classification	Road	100	0.183	0.183	0.183
	Classification	Gravel	75	0.190	0.142	0.325
	Classification	Gravel	75	0.151	0.113	0.438
2.000	Classification	Roof	100	0.190	0.190	0.190
2.001	Classification	Roof	100	0.204	0.204	0.204
2.002	Classification	Road	100	0.056	0.056	0.056
1.004	Classification	Road	100	0.110	0.110	0.110
3.000	Classification	Road	100	0.056	0.056	0.056
	Classification	Road	100	0.071	0.071	0.127
	Classification	Roof	100	0.096	0.096	0.223
1.005	Classification	Road	100	0.072	0.072	0.072
	Classification	Roof	100	0.092	0.092	0.164
1.006	Classification	Road	100	0.065	0.065	0.065
	Classification	Roof	100	0.089	0.089	0.155
1.007	Classification	Road	100	0.169	0.169	0.169
	Classification	Road	100	0.086	0.086	0.255
	Classification	Roof	100	0.214	0.214	0.214
	Classification	Roof	100	0.197	0.197	0.197
4.002	-	-	100	0.000	0.000	0.000
5.000	-	-	100	0.000	0.000	0.000
5.001	-	-	100	0.000	0.000	0.000
4.003	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
1.009	-	-	100	0.000	0.000	0.000
	Classification	Roof	100	0.215	0.215	0.215
	Classification	Roof	100	0.221	0.221	0.221
6.002	Classification	Grass	30	0.251	0.075	0.075
C 000	Classification	Road	100	0.104	0.104	0.179
6.003	-	-	100	0.000	0.000	0.000
6.004	-	-	100	0.000	0.000	0.000
1.010	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				4.185	3.552	3.552

Clifton Scannell Emerson Associa	Page 8	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	4
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Dialitaye
Micro Drainage	Network 2017.1.2	

Network Classifications for Storm

PN	USMH Name	Dia	Min Cover Depth	Depth	Ріре Туре		MH Width	MH Ring Depth (m)	МН Туре
		(mm)	(m)	(m)		(mm)	(mm)	(111)	
S1.000	70.1	450	1.340	1.616	Unclassified	1350	0	1.340	Unclassified
S1.001	70.2	450	1.489	1.739	Unclassified	1350	0	1.550	Unclassified
S1.002	70.3	450	1.115	1.848	Unclassified	1350	0	1.489	Unclassified
S1.003	70.4	525	0.965	1.584	Unclassified	1500	0	1.115	Unclassified
S2.000	71.1	375	1.325	1.494	Unclassified	1350	0	1.325	Unclassified
S2.001	71.2	375	1.494	1.683	Unclassified	1350	0	1.494	Unclassified
S2.002	71.3	375	0.732	1.683	Unclassified	1350	0	1.683	Unclassified
S1.004	70.5	525	0.965	1.011	Unclassified	1500	0	0.965	Unclassified
S3.000	72.1	300	0.683	1.457	Unclassified	1200	0	1.457	Unclassified
S1.005	70.6	600	0.827	1.011	Unclassified	1500	0	1.011	Unclassified
S1.006	70.7	750	0.827	0.996	Unclassified	1800	0	0.827	Unclassified
S1.007	70.8	750	0.925	1.121	Unclassified	1800	0	0.925	Unclassified
S4.000	73.1	300	0.900	1.047	Unclassified	1200	0	0.900	Unclassified
S4.001	73.2	375	1.047	1.902	Unclassified	1350	0	1.047	Unclassified
S4.002	73.3	375	0.865	1.924	Unclassified	1350	0	1.179	Unclassified
S5.000	16	375	0.743	1.363	Unclassified	1350	0	0.743	Unclassified
S5.001	17	375	1.015	1.363	Unclassified	1350	0	1.363	Unclassified
S4.003	73.4	375	1.015	1.256	Unclassified	1350	0	1.015	Unclassified
S1.008	70.9	750	1.239	1.300	Unclassified	1800	0	1.239	Unclassified
S1.009	20	750	1.350	1.491	Unclassified	1800	0	1.350	Unclassified
S6.000	80.1	375	1.125	1.298	Unclassified	1350	0	1.125	Unclassified
S6.001	80.2	375	1.298	1.434	Unclassified	1350	0	1.298	Unclassified
S6.002	80.3	450	1.412	1.434	Unclassified	1350	0	1.434	Unclassified
S6.003	80.4	450	1.412	1.650	Unclassified	1350	0	1.412	Unclassified
S6.004	80.5	450	1.650	1.750	Unclassified	1350	0	1.650	Unclassified
S1.010	OUTFALL MH	750	1.450	1.520	Unclassified	1800	0	1.450	Unclassified

Free Flowing Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

S1.010 68.370 66.100 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details ©1982-2017 XP Solutions

Clifton Scannell Emerson Associa	Page 9	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	L.
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainade
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Dialitaye
Micro Drainage	Network 2017.1.2	

Simulation Criteria for Storm

Rainfall Model		FSR	Pro	file Type	Summer
Return Period (years)		100	Cv	(Summer)	0.750
Region	Scotland and	Ireland	Cv	(Winter)	0.840
M5-60 (mm)		17.800	Storm Durati	on (mins)	30
Ratio R		0.323			

eefort Lodge			ociates				Page 10
1 a a la s - 1	Castl	edawson	_				
lackrock			Surfac	e Water N	Network 3		Mr.
ounty Dublin							Micro
ate 05/09/2019	9 14:0	6	Design	ned by Zvo	onimir Sal	lkic	
ile EngineNode	e_Netw	ork_3.ME	X Checke	ed by Conc	or Doherty	/	Drainac
icro Drainage			Networ	k 2017.1.	.2		
		<u>On</u>]	<u>line Contro</u>	<u>ls for St</u>	<u>.orm</u>		
Hydro-Brake® (<u>)ptimu</u>	m Manhol	e: OUTFALL	MH, DS/PI	N: S1.010	, Volume	(m³): 48.
			Unit Referer	nce MD-SHE-	0210-2280-1	.000-2280	
			Design Head			1.000	
		De	sign Flow (l/ Flush-Fl		C	22.8	
					se upstream	lculated	
			Applicati			Surface	
			Sump Availab			Yes	
			Diameter (m	,		210	
N/ -	nimum (nvert Level (e Diameter (m			66.150 225	
		-	e Diameter (m e Diameter (m			1500	
		Contr	ol Points	Head (m)	Flow (1/s)	
	D	esign Poir	t (Calculate				
			Flush-Flo				
	M	ean Flow (ver Head Ran	o® 0.728	3 19. - 19.		
The hydrologica Hydro-Brake® Op	timum a	as specifi	ed. Should a	another typ	e of contro	l device d	other than a
Hydro-Brake® Op Hydro-Brake Opt invalidated	timum a imum® k	as specifi De utilise	ed. Should a d then these	another typ storage ro	e of contro uting calcu	l device (lations w	other than a ill be
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow	timum a imum® k (1/s)	ns specifi De utilise Depth (m)	ed. Should a d then these	another typ storage ro Depth (m) 1	e of contro uting calcu Flow (l/s)	l device o lations wi Depth (m)	other than a ill be Flow (l/s)
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100	timum a imum® k (1/s) 7.2	Depth (m)	ed. Should a d then these	another typ storage ro Depth (m) 1 3.000	e of contro uting calcu Flow (l/s) 38.6	l device o lations w: Depth (m) 7.000	other than a ill be Flow (1/s) 58.2
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow	timum a imum® k (1/s) 7.2 20.3	Depth (m) 1.200	ed. Should a d then these Flow (1/s)	another typ storage ro Depth (m) 1	e of contro uting calcu Flow (1/s) 38.6 41.6	l device of lations w: Depth (m) 7.000 7.500	other than a ill be Flow (1/s) 58.2 60.2
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200	timum® k imum® k 7 (1/s) 7.2 20.3 22.7 22.7	Depth (m)	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5	another typ storage ro Depth (m) 1 3.000 3.500	e of contro uting calcu Flow (l/s) 38.6	l device o lations w: Depth (m) 7.000	other than a ill be Flow (1/s) 58.2
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500	timum® k imum® k 7 (1/s) 7.2 20.3 22.7 22.7 22.3	Depth (m) 1.200 1.400 1.600 1.800 2.000	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600	timum® k (1/s) 7.2 20.3 22.7 22.7 22.3 21.7	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600	timum® k (1/s) 7.2 20.3 22.7 22.7 22.3 21.7	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8
Hydro-Brake® Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum® k imum® k 7.2 20.3 22.7 22.7 22.3 21.7 20.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should a d then these Flow (1/s) 24.9 26.8 28.5 30.2 31.8 33.3 34.7	another typ storage ro Depth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000	e of contro uting calcu Flow (1/s) 38.6 41.6 44.4 47.0 49.4 51.8 54.0	l device of lations w: Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 58.2 60.2 62.1 63.9 65.8

Clifton Scannell Emerson Associa	Page 11	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	L.
County Dublin		Micco
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Digiligh
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Tank or Pond Manhole: OUTFALL MH, DS/PN: S1.010

Invert Level (m) 66.150

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 2405.0 1.500 3934.0 2.100 4582.0

<u>Manhole Headloss for Storm</u>

PN	US/MH Name	US/MH Headloss
<pre>\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.000 \$5.001 \$4.003 \$1.008 \$1.008 \$1.009</pre>	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4 70.9 20	Headloss 0.500 0.5
S6.000 S6.001 S6.002 S6.003 S6.004 S1.010	80.1 80.2 80.3 80.4 80.5 OUTFALL MH	0.500 0.500 0.500 0.500 0.500 0.500

		nnell Eme						Pag	je 12
Seefor	t Lodo	ge Castl	edawso	n	Enginenode C	lonee			
Blackr	ock				Surface Wate	r Networ	k 3	4	~
County	Dubli	in						N/I	
Date 0	5/09/2	2019 14:0	6		Designed by	Zvonimir	Salkic		LIU .
File E	ngineN	Node Netw	ork 3.		Checked by C	Ur	ainaq		
Aicro		_			Network 2017		0101		
<u>5 yea</u>	r Retu	arn Perio	d Summ	ary of	<u>Critical Res</u> <u>for Storm</u>	sults by	<u>Maximum 1</u>	Level (Rank 1
		Hot Hot Sta Headloss C ewage per Number of Number	Start (rt Level oeff (GI hectare Input of Onli	Factor 1 (mins) (mm) (obal) 0 (l/s) 0 Hydrogra ne Contr	.500 Flow per H .000 phs 0 Number o ols 1 Number o	nal Flow - D Factor * In: Person per f Storage f Time/Are	10m ³ /ha St let Coeffic Day (1/pe: Structures a Diagrams	torage 2 ecient 0 r/day) 0 ; 1 ; 0	.000 .800
		Number c	of Offli	ne Contr	ols 0 Number o	f Real Tim	e Controls	5 0	
				<u>Synthet</u>	ic Rainfall De	tails			
		Rainf	all Mode	el	FSF	R Ratio	o R 0.323		
					and and Ireland				
		M	5-60 (mn	n)	17.800) Cv (Winte	er) U.840		
		Margin f	or Flood	l Risk Wa	arning (mm) 300				
						J.U DVI	D Status O	FF	
		2			is Timestep Fi				
		5			is Timestep Fi	ine Inertia			
		2			is Timestep Fi	ine Inertia			
		2		Analys	is Timestep Fi DTS Status	ine Inertia ON	a Status O	FF	
		-	Pro	Analys: ofile(s)	is Timestep Fi DTS Status	ine Inertia ON Summe	a Status O er and Wint	FF	
		Dur	Pro ation(s)	Analys: ofile(s) (mins)	is Timestep Fi DTS Status 15, 30, 60, 12	ine Inertia ON Summe	a Status 0 er and Wint 80, 960, 14	FF ter 440	
		Dur Return Pe	Pro ation(s) riod(s)	Analys: ofile(s) (mins)	is Timestep Fi DTS Status 15, 30, 60, 12	ine Inertia ON Summe	a Status O er and Wint	FF ter 440 100	
		Dur Return Pe	Pro ation(s) riod(s)	Analys: ofile(s) (mins) (years)	is Timestep Fi DTS Status 15, 30, 60, 12	ine Inertia ON Summe	a Status O er and Win 80, 960, 14 5, 30, 2	FF ter 440 100	
		Dur Return Pe	Pro ation(s) riod(s)	Analys: ofile(s) (mins) (years)	is Timestep Fi DTS Status 15, 30, 60, 12	ine Inertia ON Summe	a Status O er and Win 80, 960, 14 5, 30, 2	FF ter 440 100	Wate
	US/MH	Dur Return Pe	Pro ation(s) riod(s) mate Cha	Analys: ofile(s) (mins) (years)	is Timestep Fi DTS Status 15, 30, 60, 12	ON Summa 20, 360, 4	a Status O er and Win 80, 960, 14 5, 30, 2	FF ter 440 100 10	Wate: Wate:
PN	US/MH Name	Dur Return Pe	Pro ation(s) riod(s) mate Cha Return	Analys: ofile(s) (mins) (years) ange (%)	is Timestep Fi DTS Status 15, 30, 60, 12 First (X)	ON Summa 20, 360, 4	a Status O er and Wint 80, 960, 14 5, 30, 1 10, 10,	FF ter 440 100 10 Overflo	
	Name	Dur Return Pe Cli Storm	Pro ation(s) riod(s) mate Cha Return Period	Analys: ofile(s) (mins) (years) ange (%) Climate Change	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	w Leve (m)
s1.000	Name 70.1	Dur Return Pe Cli Storm 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	w Leve (m) 67.83
S1.000 S1.001	Name 70.1 70.2	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	w Leve (m) 67.83 67.72
S1.000 S1.001 S1.002	Name 70.1 70.2 70.3	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10% +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	w Leve (m) 67.83 67.72 67.71
\$1.000 \$1.001 \$1.002 \$1.003	Name 70.1 70.2 70.3 70.4	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	w Leve (m) 67.83 67.72 67.71 67.65
S1.000 S1.001 S1.002 S1.003 S2.000	Name 70.1 70.2 70.3 70.4 71.1	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	W Leve (m) 67.83 67.72 67.71 67.65 68.06
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001	Name 70.1 70.2 70.3 70.4 71.1 71.2	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	w Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10% +10% +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	W Leve (m) 67.83 67.72 67.71 67.65 68.06 67.79 67.79
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10% +10% +10% +10% +10%	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	W Leve (m) 67.83 67.72 67.71 67.65 67.79 67.58
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Winter	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Level (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.79 67.79 67.79 67.74 67.35
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.35 67.09
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8	Dur Return Pe Cli Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	is Timestep Fi DTS Status 15, 30, 60, 12 Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.35 67.02
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	is Timestep Fi DTS Status 15, 30, 60, 12 Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Level (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.02 67.48
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	<pre>is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer</pre>	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Level (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.58 67.02 67.48 67.27
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001 S4.002	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	<pre>is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer</pre>	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	 Level (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.58 67.02 67.48 67.27 67.19
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001 S4.002 S5.000	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	V Leve (m) 67.83 67.72 67.71 67.65 68.06 67.79 67.58 67.74 67.58 67.74 67.02 67.02 67.48 67.27 67.19 67.01
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001 S4.002 S5.001	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	<pre>is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summe</pre>	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	Frequencies W Leves (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.58 67.74 67.02 67.02 67.48 67.27 67.19 67.01 66.99
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.001 \$5.001 \$4.003	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: ofile(s) (mins) (years) ange (%) Climate Change +10% +10	<pre>is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer</pre>	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	V Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.58 67.74 67.02 67.02 67.48 67.27 67.19 67.01 66.99 67.00
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.001 \$4.003 \$1.008	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4 70.9	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: Dfile(s) (mins) (years) ange (%) Climate Change +10% +10	<pre>is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summe</pre>	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	V Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.58 67.74 67.02 67.02 67.48 67.27 67.19 67.01 66.99 67.00 66.93
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.001 \$5.001 \$4.003	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4 70.9 20	Dur Return Pe Cli Storm 15 Winter 15 Winter	Pro ation(s) mate Cha Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Analys: Dfile(s) (mins) (years) ange (%) Climate Change +10% +10	<pre>is Timestep Fi DTS Status 15, 30, 60, 12 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer</pre>	Ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O er and Wint 80, 960, 1 5, 30, 1 10, 10, First (Z)	FF ter 440 100 10 Overflo	V Leve (m) 67.83 67.72 67.71 67.65 68.06 67.97 67.58 67.74 67.58 67.74 67.02 67.02 67.48 67.27 67.19 67.01 66.99 67.00

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Water Network 3	<u> </u>			
County Dublin		Micro			
Date 05/09/2019 14:06	Designed by Zvonimir Salkic				
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Drainage			
Micro Drainage	Network 2017.1.2				

5 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)		Status	Level Exceeded
S1.000	70.1	-0.279	0.000	0.26		37.3	OK	
S1.001	70.2	-0.175	0.000	0.35		44.3	OK	
S1.002	70.3	-0.129	0.000	0.78		109.5	OK	
S1.003	70.4	-0.054	0.000	0.79		154.5	OK	
S2.000	71.1	-0.206	0.000	0.39		37.6	OK	
S2.001	71.2	-0.135	0.000	0.69		67.4	OK	
S2.002	71.3	-0.122	0.000	0.78		72.2	OK	
S1.004	70.5	0.000	0.000	1.07		223.7	OK	
S3.000	72.1	-0.110	0.000	0.72		47.6	OK	
S1.005	70.6	-0.135	0.000	0.93		256.8	OK	
S1.006	70.7	-0.262	0.000	0.52		261.3	OK	
S1.007	70.8	-0.205	0.000	0.79		274.4	OK	
S4.000	73.1	-0.065	0.000	0.86		40.7	OK	
S4.001	73.2	-0.124	0.000	0.76		70.0	OK	
S4.002	73.3	-0.078	0.000	0.98		67.3	OK	
S5.000	16	-0.375	0.000	0.00		0.0	OK	
S5.001	17	-0.230	0.000	0.04		4.1	OK	
S4.003	73.4	-0.084	0.000	0.95		59.9	OK	
S1.008	70.9	-0.128	0.000	1.20		323.9	OK	
S1.009	20	-0.227	0.000	0.83		323.8	OK	
S6.000	80.1	-0.193	0.000	0.44		42.4	OK	

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Water Network 3	<u> </u>			
County Dublin		Micro			
Date 05/09/2019 14:06	Designed by Zvonimir Salkic				
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Drainage			
Micro Drainage	Network 2017.1.2				

5 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	s	torm	Return Period	Climate Change	First Surch	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.
S6.001	80.2	15	Winter	5	+10%	30/15	Summer			
S6.002	80.3	15	Winter	5	+10%	100/15	Summer			
S6.003	80.4	15	Winter	5	+10%	100/15	Winter			
S6.004	80.5	15	Winter	5	+10%	100/15	Summer			
S1.010	OUTFALL MH	960	Winter	5	+10%					

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S6.001	80.2	67.033	-0.119	0.000	0.76		74.1	OK	
S6.002	80.3	66.793	-0.173	0.000	0.66		94.5	OK	
S6.003	80.4	66.586	-0.202	0.000	0.54		90.8	OK	
S6.004	80.5	66.539	-0.161	0.000	0.73		90.5	OK	
S1.010	OUTFALL MH	66.471	-0.429	0.000	0.04		22.6	OK	

Clifton Scar	nnell Eme	rson As	sociat	ces			Page	15
				Enginenode (Clonee			-
Blackrock	90 00001	o ddin o o r		Surface Wate		kЗ	4	
County Dubl:	in		ľ	barrade made				m
Date 05/09/2		<u> </u>			Recencionic		— Mic	
				Designed by			Dra	inaqe
File Engine		ork_3.M		Checked by C		erty	Did	inage
Micro Draina	age		1	Network 2017	1.1.2			
<u>30 year Ret</u>	urn Peric	od Summa	ary of	<u>Critical Re</u> <u>for Storm</u>	<u>sults by</u>	Maximum	Level (R	<u>ank 1)</u>
	Hot Hot Sta: Headloss Co ewage per l Number of Number of	Start (r rt Level oeff (Glo hectare Input H of Onlin	actor 1. nins) (mm) obal) 0. (1/s) 0. Nydrogra	.500 Flow per	nal Flow - D Factor * In: Person per of Storage of Time/Are	10m³/ha St let Coeffic Day (1/pe: Structures a Diagrams	torage 2.0 ecient 0.8 r/day) 0.0 : 1 : 0	000 800
	Number c	of Offlin				e Controls	. 0	
			l n Scotla	and and Irelan	R Ratio d Cv (Summe	er) 0.750		
	M	5-60 (mm))	17.80	0 Cv (Winte	er) 0.840		
	Margin fo	or Flood	Risk Wa	arning (mm) 30	0.0 DVI) Status 0	FF	
			7					
			Analysi	is Timestep F	ine Inertia	a Status O	FF	
			Analysi	is Timestep F DTS Status		a Status O	FF	
			Analysi	-		a Status O	FF	
		Pro	-	DTS Status	ON			
	Dur		file(s)	DTS Status	ON	er and Wint	ter	
	Return Pe	ation(s) riod(s)	file(s) (mins) (years)	DTS Status	ON	er and Wint	ter 440	
	Return Pe	ation(s)	file(s) (mins) (years)	DTS Status	ON	er and Wint 30, 960, 14	ter 440 100	
	Return Pe	ation(s) riod(s)	file(s) (mins) (years)	DTS Status	ON	er and Win 30, 960, 14 5, 30, 1	ter 440 100	
	Return Pe	ation(s) riod(s)	file(s) (mins) (years)	DTS Status	ON	er and Win 30, 960, 14 5, 30, 1	ter 440 100	Water
US/MH	Return Pe Cli	ation(s) riod(s) mate Cha: Return	file(s) (mins) (years) nge (%) Climate	DTS Status 15, 30, 60, 1 First (X)	ON Summa 20, 360, 49 First (Y)	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level
US/MH PN Name	Return Pe Cli	ation(s) riod(s) mate Cha:	file(s) (mins) (years) nge (%) Climate	DTS Status 15, 30, 60, 1 First (X)	ON Summa 20, 360, 49	er and Wint 30, 960, 14 5, 30, 1 10, 10,	ter 440 100 10	
PN Name	Return Pe Cli: Storm	ation(s) riod(s) mate Cha: Return (Period	file(s) (mins) (years) nge (%) Climate Change	DTS Status 15, 30, 60, 1 First (X) Surcharge	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m)
PN Name S1.000 70.1	Return Pe Cli: Storm 15 Winter	ation(s) riod(s) mate Char Return (Period 30	file(s) (mins) (years) nge (%) Climate Change +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209
PN Name \$1.000 70.1 \$1.001 70.2	Return Pe Cli: Storm 15 Winter 15 Winter	ation(s) riod(s) mate Cha: Return (Period	file(s) (mins) (years) nge (%) Climate Change	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3	Return Pe Cli: Storm 15 Winter	ation(s) riod(s) mate Char Return (Period 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4	Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Chas Return (Period 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	ON Summa 20, 360, 43 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1	Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Char Return (Period 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	ON Summa 20, 360, 43 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Chas Return (Period 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Chas Period 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Winter	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter	ON Summa 20, 360, 43 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Summer	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.225
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.007 70.8 \$4.000 73.1	Return Pe Clis Storm 15 Winter 15 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.225 67.688
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Summer 15 Winter 15 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.225 67.688 67.437
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2 \$4.002 73.3	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Summer 15 Winter 15 Winter 15 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ON Summa 20, 360, 4 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.225 67.688 67.437 67.273
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2 \$4.002 73.3 \$5.000 16	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Summer 15 Winter 15 Winter 30 Summer 15 Winter 30 Summer 30 Summer 30 Summer 30 Summer	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	ON Summa 20, 360, 44 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.618 67.325 67.688 67.437 67.273 67.097
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2 \$4.002 73.3 \$5.000 16 \$5.001 17	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Summer 15 Winter 30 Summer 15 Winter 30 Winter 30 Winter 30 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Sum	ON Summa 20, 360, 44 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.618 67.325 67.688 67.437 67.273 67.097 67.097
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2 \$4.002 73.3 \$5.000 16 \$5.001 17 \$4.003 73.4	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Summer 15 Winter 30 Summer 30 Winter 30 Winter 30 Winter 30 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	ON Summa 20, 360, 44 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.225 67.688 67.437 67.273 67.097 67.097 67.099
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2 \$4.002 73.3 \$5.000 16 \$5.001 17 \$4.003 73.4 \$1.008 70.9	Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Summer 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	ON Summa 20, 360, 44 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.625 67.688 67.437 67.273 67.097 67.099 67.072
PN Name \$1.000 70.1 \$1.001 70.2 \$1.002 70.3 \$1.003 70.4 \$2.000 71.1 \$2.001 71.2 \$2.002 71.3 \$1.004 70.5 \$3.000 72.1 \$1.005 70.6 \$1.006 70.7 \$1.007 70.8 \$4.000 73.1 \$4.001 73.2 \$4.002 73.3 \$5.000 16 \$5.001 17 \$4.003 73.4 \$1.008 70.9 \$1.009 20	Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Summer 15 Winter 30 Summer 30 Winter 30 Winter 30 Winter 30 Winter	ation(s) riod(s) mate Char Period 30 30 30 30 30 30 30 30 30 30 30 30 30	file(s) (mins) (years) nge (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	ON Summa 20, 360, 44 First (Y) Flood	er and Wint 30, 960, 14 5, 30, 1 10, 10, First (Z)	ter 440 100 10 Overflow	Level (m) 68.209 68.177 68.152 68.005 68.177 68.122 67.957 67.849 67.857 67.618 67.325 67.225 67.688 67.437 67.273 67.097 67.097 67.099

Clifton Scannell Emerson Associa	Page 16	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	70.1	0.099	0.000	0.35		49.9	SURCHARGED	
S1.001	70.2	0.276	0.000	0.57		72.3	SURCHARGED	
S1.002	70.3	0.310	0.000	0.98		137.1	SURCHARGED	
S1.003	70.4	0.299	0.000	1.15		224.3	SURCHARGED	
S2.000	71.1	-0.098	0.000	0.56		53.9	OK	
S2.001	71.2	0.016	0.000	1.00		97.3	SURCHARGED	
S2.002	71.3	0.040	0.000	1.07		99.1	SURCHARGED	
S1.004	70.5	0.264	0.000	1.55		323.2	SURCHARGED	
S3.000	72.1	0.007	0.000	1.02		67.0	SURCHARGED	
S1.005	70.6	0.129	0.000	1.40		388.1	SURCHARGED	
S1.006	70.7	-0.029	0.000	0.76		382.2	OK	
S1.007	70.8	0.000	0.000	1.05		361.3	OK	
S4.000	73.1	0.138	0.000	1.24		58.4	SURCHARGED	
S4.001	73.2	0.035	0.000	1.07		98.6	SURCHARGED	
S4.002	73.3	0.002	0.000	1.44		98.7	SURCHARGED	
S5.000	16	-0.296	0.000	0.00		0.4	OK	
S5.001	17	-0.131	0.000	0.11		9.9	OK	
S4.003	73.4	0.013	0.000	1.20		75.0	SURCHARGED	
S1.008	70.9	0.011	0.000	1.76		473.6	SURCHARGED	
S1.009	20	0.009	0.000	1.18		461.0	SURCHARGED	
S6.000	80.1	-0.033	0.000	0.62		59.5	OK	

Clifton Scannell Emerson Associa	Page 17	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	<u>Y</u>
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	Drainage
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Digitigh
Micro Drainage	Network 2017.1.2	

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	s	torm		Climate Change	First Surch	• • •	First (Y) Flood	First (Z) Overflow	Overflow Act.
S6.001	80.2	15	Winter	30	+10%	30/15	Summer			
S6.002	80.3	15	Winter	30	+10%	100/15	Summer			
S6.003	80.4	15	Winter	30	+10%	100/15	Winter			
S6.004	80.5	15	Winter	30	+10%	100/15	Summer			
S1.010	OUTFALL MH	960	Winter	30	+10%					

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S6.001	80.2	67.221	0.069	0.000	1.12		108.2	SURCHARGED	
S6.002	80.3	66.892	-0.074	0.000	0.97		137.7	OK	
S6.003	80.4	66.692	-0.096	0.000	0.74		125.9	OK	
S6.004	80.5	66.647	-0.053	0.000	1.00		123.1	OK	
S1.010	OUTFALL MH	66.610	-0.290	0.000	0.04		22.7	OK	

Clifto	n Scai	nneii Eme	rson A	ssociat	les			Page	
					Enginenode (lonee			-
Blackr		ye caser	cuawso		Surface Wate		lr 3	4	
					Sullace wale	er Networ	кJ		\sim
County								— Mic	n)
Date 0	5/09/2	2019 14:0	6		Designed by	Zvonimir	Salkic		
File En	nginel	Node_Netw	ork_3.	MDX	Checked by C	Conor Doh	erty	DIC	inag
Micro	Draina	age			Network 2017	7.1.2			
<u>100 y</u>	vear R	eturn Per	riod Su	ummary (of Critical	Results k	oy Maximu	ım Level	(Rank
				<u>1</u>	<u>) for Storm</u>				
				Sim	ulation Criter	<u>ia</u>			
					.000 Additio				
					0 MAD				
				L (mm)			let Coeffie		
					.500 Flow per	Person per	uay (l/pei	r/day) 0.0	000
	roui S	ewage per 1	nectare	(1/5) 0					
		Number of	Tnput	Hvdrogra	phs 0 Number o	of Storage	Structures	. 1	
			-		ols 1 Number o	-			
					ols 0 Number o		2		
					cic Rainfall De				
		Rainfa	all Mode				D R 0.323		
					and and Irelan				
		M	5-60 (mn	n)	17.80	0 Cv (Winte	er) 0.840		
		Margin f	or Floor	A Diek Wa	arning (mm) 30				
						0 0 DV	D Status ∩		
		nargin it	01 11000		-		D Status Oi a Status Oi		
		hargin i	01 11000		is Timestep F DTS Status	ine Inertia			
		nargin i	01 11000		is Timestep F	ine Inertia			
		Hargin i			is Timestep F	ine Inertia			
		-	Pro	Analysi ofile(s)	is Timestep F DTS Status	ine Inertia ON Summe	a Status O er and Wint	FF	
		Dur	Pro ation(s)	Analysi ofile(s)) (mins)	is Timestep F DTS Status 15, 30, 60, 1	ine Inertia ON Summe	a Status 01 er and Wint 80, 960, 14	FF ter 440	
		Dur Return Pe	Pro ation(s) riod(s)	Analysi ofile(s)) (mins) (years)	is Timestep F DTS Status 15, 30, 60, 1	ine Inertia ON Summe	a Status O er and Wint 80, 960, 14 5, 30, 2	FF ter 440 100	
		Dur Return Pe	Pro ation(s) riod(s)	Analysi ofile(s)) (mins)	is Timestep F DTS Status 15, 30, 60, 1	ine Inertia ON Summe	a Status 01 er and Wint 80, 960, 14	FF ter 440 100	
		Dur Return Pe	Pro ation(s) riod(s)	Analysi ofile(s)) (mins) (years)	is Timestep F DTS Status 15, 30, 60, 1	ine Inertia ON Summe	a Status O er and Wint 80, 960, 14 5, 30, 2	FF ter 440 100	Water
	US/MH	Dur Return Pe Cli:	Pro ation(s) riod(s) mate Cha Return	Analysi ofile(s)) (mins) (years) ange (%) Climate	is Timestep F DTS Status 15, 30, 60, 1 First (X)	ine Inertia ON Summa 20, 360, 49 First (Y)	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve
PN	US/MH Name	Dur Return Pe	Pro ation(s) riod(s) mate Cha Return	Analysi ofile(s)) (mins) (years) ange (%)	is Timestep F DTS Status 15, 30, 60, 1 First (X)	ine Inertia ON Summa 20, 360, 49	a Status O er and Wint 80, 960, 14 5, 30, 2 10, 10,	FF ter 440 100 10	
PN 51.000	Name	Dur Return Pe Cli:	Pro ation(s) riod(s) mate Cha Return Period	Analysi ofile(s)) (mins) (years) ange (%) Climate	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge	ine Inertia ON Summa 20, 360, 43 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve
	Name 70.1	Dur Return Pe Cli: Storm	Pro ation(s) riod(s) mate Cha Return Period	Analysi ofile(s)) (mins) (years) ange (%) Climate Change	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m)
S1.000	Name 70.1 70.2	Dur Return Pe Cli: Storm 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer	ine Inertia ON Summa 20, 360, 43 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82
S1.000 S1.001	Name 70.1 70.2 70.3	Dur Return Pe Cli: Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79
S1.000 S1.001 S1.002	Name 70.1 70.2 70.3 70.4	Dur Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10% +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55
\$1.000 \$1.001 \$1.002 \$1.003	Name 70.1 70.2 70.3 70.4 71.1	Dur Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10% +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer	ine Inertia ON Summa 20, 360, 43 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73
<pre>S1.000 S1.001 S1.002 S1.003 S2.000</pre>	Name 70.1 70.2 70.3 70.4 71.1 71.2	Dur Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter	ine Inertia ON 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3	Dur Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter	ine Inertia ON 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5	Dur Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer	ine Inertia ON 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1	Dur Return Pe Cli: Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer	ine Inertia ON 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.06
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6	Dur Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.06 67.86
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7	Dur Return Pe Cli: Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Winter	ine Inertia ON Summa 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.06 67.86 67.44
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8	Dur Return Pe Clis Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer	ine Inertia ON Summa 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.44 67.32
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1	Dur Return Pe Clis Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 4 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.06 67.86 67.44 67.32 68.02
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2	Dur Return Pe Clis Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.46 67.44 67.32 68.02 67.62
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001 S4.002	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3	Dur Return Pe Cli: Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.46 67.44 67.32 68.02 67.62 67.32
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.000	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16	Dur Return Pe Cli: Storm 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Summer 30/15 Summer	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.46 67.44 67.32 68.02 67.62 67.22 67.22
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001 S4.002 S5.000 S5.001	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17	Dur Return Pe Clis Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	<pre>is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30</pre>	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.44 67.32 68.02 67.42 67.22 67.24
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.000 \$5.001 \$4.003	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4	Dur Return Pe Cli: Storm 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	<pre>is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 3</pre>	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.44 67.32 67.44 67.32 67.24 67.24 67.24
S1.000 S1.001 S1.002 S1.003 S2.000 S2.001 S2.002 S1.004 S3.000 S1.005 S1.006 S1.007 S4.000 S4.001 S4.002 S5.000 S5.001 S4.003 S1.008	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4 70.9	Dur Return Pe Clis Storm 15 Winter 15 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	<pre>is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 3</pre>	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.44 67.32 67.44 67.32 67.24 67.24 67.24 67.24 67.23
\$1.000 \$1.001 \$1.002 \$1.003 \$2.000 \$2.001 \$2.002 \$1.004 \$3.000 \$1.005 \$1.006 \$1.007 \$4.000 \$4.001 \$4.002 \$5.000 \$5.001 \$4.003	Name 70.1 70.2 70.3 70.4 71.1 71.2 71.3 70.5 72.1 70.6 70.7 70.8 73.1 73.2 73.3 16 17 73.4 70.9 20	Dur Return Pe Cli: Storm 15 Winter 15 Winter 30 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Pro ation(s) riod(s) mate Cha Return Period 100 100 100 100 100 100 100 100 100 10	Analysi ofile(s)) (mins) (years) ange (%) Climate Change +10% +	<pre>is Timestep F DTS Status 15, 30, 60, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter 30/15 Winter 30/15 Winter 30/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 3</pre>	ine Inertia ON Summa 20, 360, 44 First (Y) Flood	a Status O: er and Wint 80, 960, 14 5, 30, 1 10, 10, First (Z)	FF 440 100 10 Overflow	Leve (m) 68.86 68.82 68.79 68.55 68.73 68.68 68.46 68.28 68.46 67.86 67.44 67.32 67.44 67.32 67.24 67.24 67.24

Clifton Scannell Emerson Associa	Page 19	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

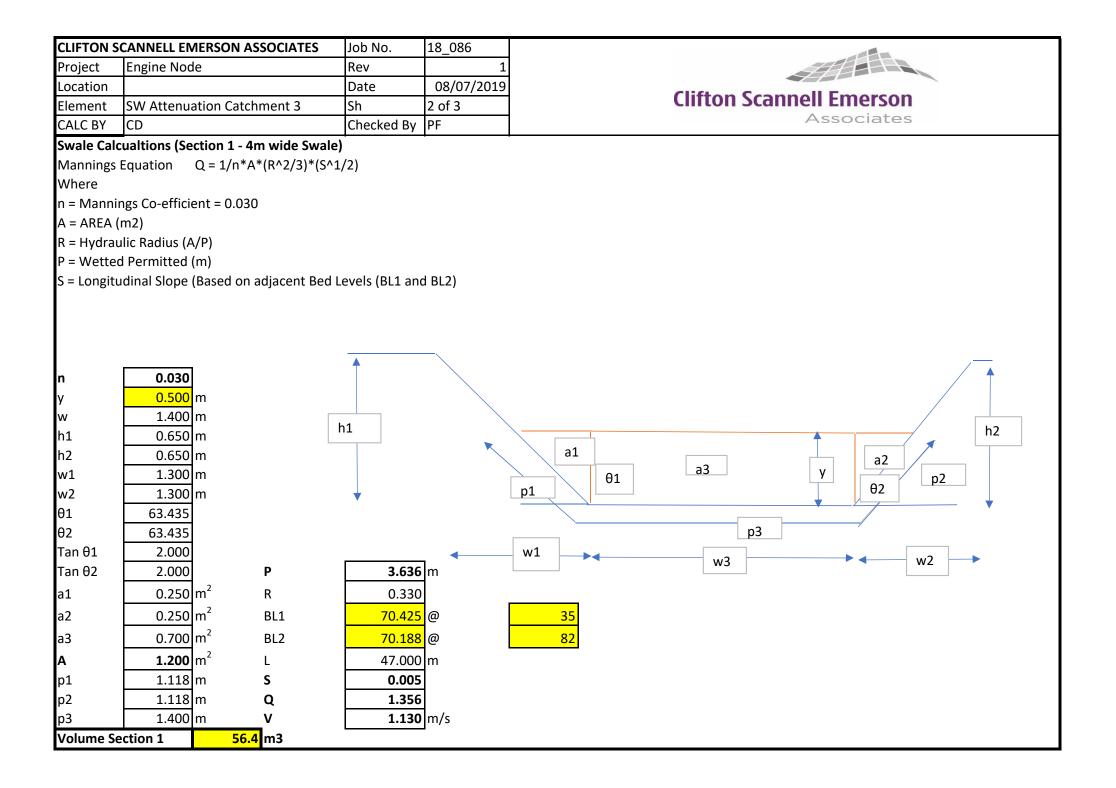
100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

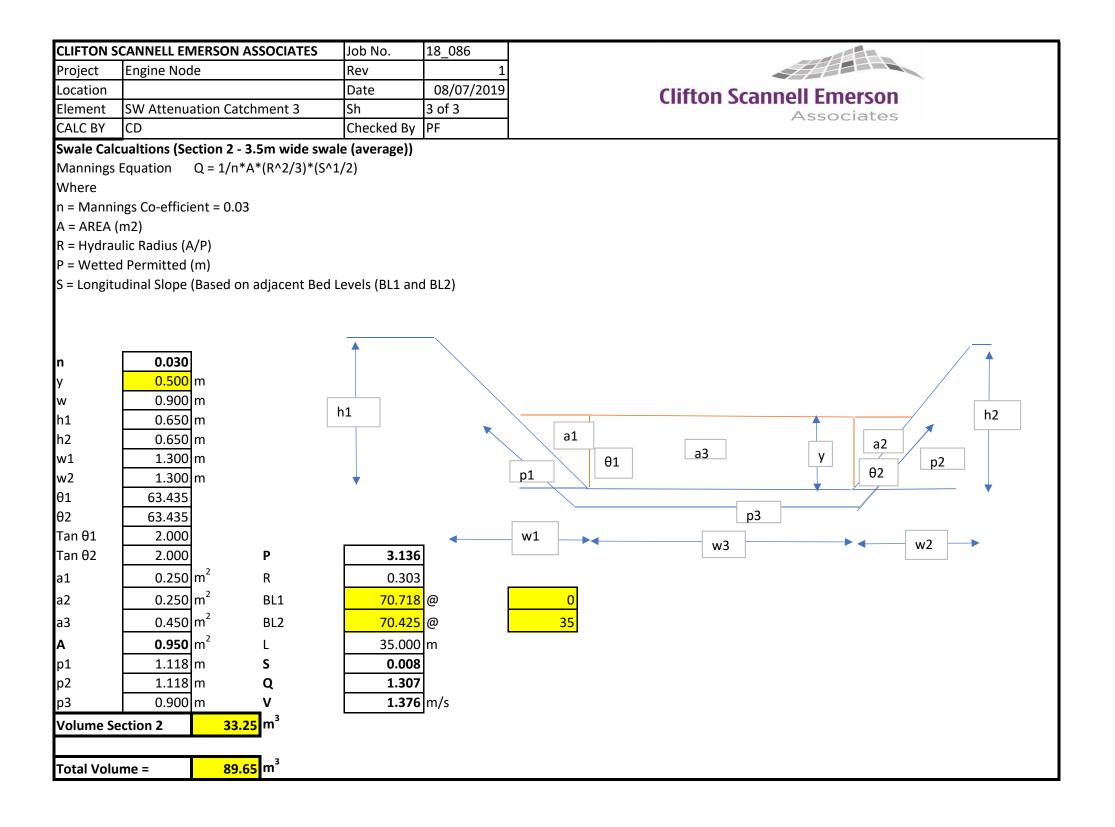
PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	70.1	0.759	0.000	0.41		58.3	SURCHARGED	
S1.001	70.2	0.928	0.000	0.61		78.0	SURCHARGED	
S1.002	70.3	0.956	0.000	1.36		190.0	SURCHARGED	
S1.003	70.4	0.853	0.000	1.50		294.5	FLOOD RISK	
S2.000	71.1	0.462	0.000	0.63		61.1	SURCHARGED	
S2.001	71.2	0.577	0.000	1.16		113.1	SURCHARGED	
S2.002	71.3	0.543	0.000	1.30		120.3	SURCHARGED	
S1.004	70.5	0.703	0.000	2.06		429.8	FLOOD RISK	
S3.000	72.1	0.219	0.000	1.29		85.0	SURCHARGED	
S1.005	70.6	0.379	0.000	1.84		508.8	SURCHARGED	
S1.006	70.7	0.093	0.000	0.99		498.3	SURCHARGED	
S1.007	70.8	0.103	0.000	1.53		528.6	SURCHARGED	
S4.000	73.1	0.472	0.000	1.54		72.8	SURCHARGED	
S4.001	73.2	0.221	0.000	1.41		130.6	SURCHARGED	
S4.002	73.3	0.055	0.000	1.88		128.6	SURCHARGED	
S5.000	16	-0.144	0.000	0.01		0.6	OK	
S5.001	17	0.022	0.000	0.12		11.2	SURCHARGED	
S4.003	73.4	0.175	0.000	1.46		91.9	SURCHARGED	
S1.008	70.9	0.169	0.000	2.25		606.4	SURCHARGED	
S1.009	20	0.104	0.000	1.55		602.7	SURCHARGED	
S6.000	80.1	0.299	0.000	0.78		74.9	SURCHARGED	

Clifton Scannell Emerson Associa	tes	Page 20
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Water Network 3	<u> </u>
County Dublin		Micro
Date 05/09/2019 14:06	Designed by Zvonimir Salkic	
File EngineNode_Network_3.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name Storm			Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
S6.001 S6.002	80.3	10	100	+10%	30/15 Summer 100/15 Summer			
S6.003 <mark>S6.004</mark> S1.010	80.4 80.5 OUTFALL MH	15 Winter	100		100/15 Winter 100/15 Summer			


PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S6.001	80.2	67.519	0.367	0.000	1.43		138.6	SURCHARGED	
S6.002	80.3	67.084	0.118	0.000	1.23		174.3	SURCHARGED	
S6.003	80.4	66.808	0.020	0.000	0.94		158.5	SURCHARGED	
S6.004	80.5	66.743	0.043	0.000	1.25		153.4	SURCHARGED	
S1.010	OUTFALL MH	66.738	-0.162	0.000	0.04		22.7	OK	


Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix G – Swale Design Calculations

CLIFTON SCANN	IELL EMERSON	ASSOCIAT	ΈS	Job No.	18_086										
Project	Engine Node			Rev	1			7/11							
Location				Date	08/07/2019										
Element	SW Attenuation	on Catchme	ent 3	Sh	1 of 3										
CALC BY	CD			Checked By	PF		tes								
Storm Return Pe Total Site Area PIMP	eriod			Years Hectares (Ha) %											
Total Impermea	ble Area		0.16	Hectares											
Allowable Outfl	ow (QBAR) = (0.00108 (AF	REA ^{^0.89})*(SAAF	R ^{^0.89})*(SOIL ^{^2.17})											
AREA	A 50 Hectares														
AREA		Km ²													
SAAR			reann DATA												
SOIL				vs (SOIL TYPE 3)	- See Table D1 of A	ppendix D of Vo	lume 2 of GDS	DS							
QBAR		m^3/s	for 50 hectare					-							
QBAR		m ³ /s/ha		1											
			J	l/s/ha											
QBAR	0.001		for Total Catch												
QBAR	0.84	l/s	for Total Catch	nment Area											
Demotion	Rainfall	-	L .		D1										
Ultration	Raintall	Climate	Intensity	Area	II)Ischarge	Runoff	Allowable	Storage							
Duration		Climate Change	Intensity I	Area A	Discharge O = 2.78*C*I*A)	Runoff Volume		Storage Required							
Duration	100m Year	Change	1	A	Q = 2.78*C*I*A)	Volume	Outflow	Required							
	100m Year (mm)	Change 10%	l (mm/hr)	A (Ha)	Q = 2.78*C*I*A) (I/s)	Volume (m³)	Outflow (m ³)	Required (m ³)							
5	100m Year (mm) 13	Change 10% 1.1	l (mm/hr) 156.00	A (Ha) 0.16	Q = 2.78*C*I*A) (I/s) 76.33	Volume (m ³) 22.898	Outflow (m ³) 0.252	Required (m ³) 22.646							
5	100m Year (mm) 13 18.1	Change 10% 1.1 1.1	l (mm/hr) 156.00 108.60	A (Ha) 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14	Volume (m ³) 22.898 31.881	Outflow (m ³) 0.252 0.504	Required (m ³) 22.646 31.378							
5 10 15	100m Year (mm) 13 18.1 21.3	Change 10% 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20	A (Ha) 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69	Volume (m ³) 22.898 31.881 37.518	Outflow (m ³) 0.252 0.504 0.756	Required (m ³) 22.646 31.378 36.762							
5 10 15 30	100m Year (mm) 13 18.1 21.3 26.4	Change 10% 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80	A (Ha) 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83	Volume (m ³) 22.898 31.881 37.518 46.501	Outflow (m ³) 0.252 0.504 0.756 1.512	Required (m ³) 22.646 31.378 36.762 44.990							
5 10 15 30 60	100m Year (mm) 13 18.1 21.3 26.4 32.6	Change 10% 1.1 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60	A (Ha) 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95	Volume (m ³) 22.898 31.881 37.518 46.501 57.422	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023	Required (m ³) 22.646 31.378 36.762 44.990 54.399							
5 10 15 30 60 120	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047	Required (m ³) 22.646 31.378 36.762 44.990 54.399 64.938							
5 10 15 30 60 120 180	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070	Required (m ³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250							
5 10 15 30 60 120 180 240	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 15.20	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093	Required (m ³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625							
5 10 15 30 60 120 180 240 360	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203							
5 10 15 30 60 120 180 240	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093	Required (m ³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344							
5 10 15 30 60 120 180 240 360 540	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666							
5 10 15 30 60 120 180 240 360 540 720	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731							
5 10 15 30 60 120 180 240 360 540 720 1080	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 86.2	Change 10% 1.1	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 86.2	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440 2880	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 86.2 98.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440 2880	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 86.2 98.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59 2.05	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76 1.00	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440 2880 Swale Volume <i>A</i> Volume Require	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 86.2 98.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59 2.05	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76 1.00	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440 2880 Swale Volume <i>A</i> Volume Require	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 69.8 79 86.2 98.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59 2.05	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76 1.00	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440 2880 Swale Volume <i>A</i> Volume Require	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 69.8 79 86.2 98.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59 2.05	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76 1.00	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							
5 10 15 30 60 120 180 240 360 540 720 1080 1440 2880 Swale Volume <i>A</i> Volume Require	100m Year (mm) 13 18.1 21.3 26.4 32.6 40.3 45.6 49.8 56.4 63.9 69.8 79 69.8 79 86.2 98.3	Change 10% 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	I (mm/hr) 156.00 108.60 85.20 52.80 32.60 20.15 15.20 12.45 9.40 7.10 5.82 4.39 3.59 2.05	A (Ha) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Q = 2.78*C*I*A) (I/s) 76.33 53.14 41.69 25.83 15.95 9.86 7.44 6.09 4.60 3.47 2.85 2.15 1.76 1.00	Volume (m ³) 22.898 31.881 37.518 46.501 57.422 70.985 80.320 87.718 99.343 112.554 122.946 139.151	Outflow (m ³) 0.252 0.504 0.756 1.512 3.023 6.047 9.070 12.093 18.140 27.210 36.280 54.420 72.560	Required (m³) 22.646 31.378 36.762 44.990 54.399 64.938 71.250 75.625 81.203 85.344 86.666 84.731 79.274							

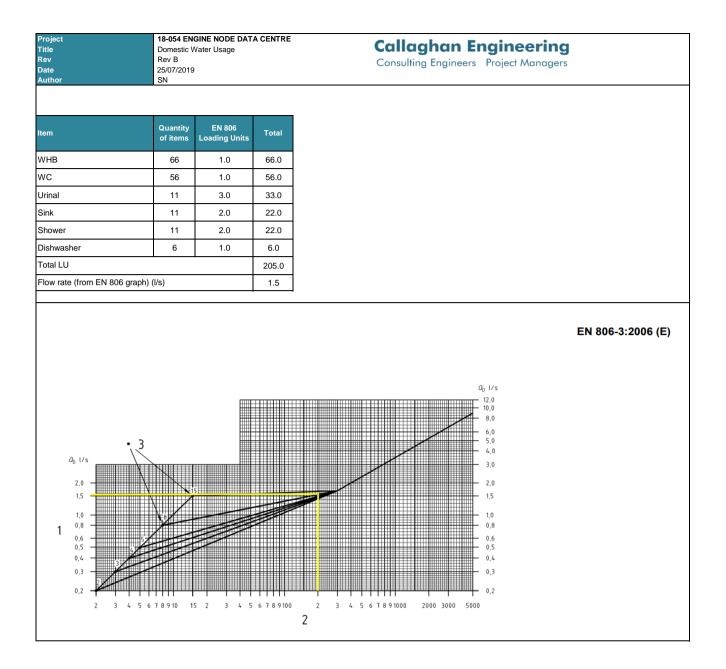
Appendix H – Foul Water Drainage Calculations

CLIENT	EngineNode					Pro	oject No.	18_086		Date:	Revision					
PROJECT	EngineNode										02/09/2019	PL				
Description	Sanitary Water Flow Rate Calculation															
Reference	BS EN 12056-2:2	S EN 12056-2:2000: "Gravity Drainage Systems Inside Buildings"														
<u>Pipe No</u>	Location	ation <u>WC (6L</u> <u>cistern)*</u> <u>WHB</u> <u>Show</u>		<u>Shower</u>	<u>Urinal</u>	<u>Sink</u>	<u>Dish</u> <u>Commercial</u> <u>Wash</u> <u>Wash</u>		<u>Floor</u> <u>Drains</u> (DN100)	<u>Sub Total</u> <u>DU</u>	<u>Total DU</u>	<u>Cummulative</u> <u>Q I/s</u>				
FF Office(k _{DU}) = 0.5**	0.5	2	0.5	0.6	0.8	0.8	0.8	1.5	2		Discharge Units (DU)	<u>Volume</u>				
1.000	FMH1.0 to FMH1.3	11	13	2	2	2	1		12	57.7	57.7	3.8				
1.003	FMH1.3 to FMH1.8	4	5	1	1	1	1		4	21.5	79.2	4.45				
1.008	FMH1.8 to FMH1.11	8	9	2	2	2	1		8	41.7	120.9	5.5				
7.000	FMH7.0 - FMH7.5	11	13	2	2	2	1		12	57.7	57.7	3.8				
7.005	FMH7.5 - FMH7.6	11	13	2	2	2	1		12	57.7	115.4	5.38				
7.006	FMH7.6 - FMH1.11	11	13	2	2	2	1		12	57.7	173.1	6.58				
1.009	FMH1.12 - PS	0	0	0	0	0	0		0	0	294	8.58				
	Σ	56	66	11	11	11	6	0	60							

TITLE								Project Num	ber				Revision	Date
Project		EngineNode											PL	02/09/2019
SUBJECT								_	1					
Sanitary	Sewer	Pipe Siz	ing Calcula	ations										
EN 1205	6 - 2 :20	00 "Grav	vity Draina	ge System	s Inside	Buildings"								
Note:		-		-										
-	0.0015													
Pipe	Dist	Slope	Piezo	Pipe	Pipe		Full		Full	Prop	Prop	Actual	Self	Notes
								Adequate		Discharge			Cleansing	
Section	(m)	(1/X)	Gradient	Dia (mm)	Dia (m)	Flow (I/s)	Cap (I/s)	Capacity?	Vel (m/s)	<0.8	Vel (m/s)	Vel (m/s)	>0.75m/s? **	
1.000	90.0	82.0	0.012	150.0	0.150	3.8	17.095	\checkmark	0.97	0.22	0.77	0.75	\checkmark	
1.003	90.0	96.0	0.010	150.0	0.150	4.5	15.791	\checkmark	0.89	0.28	0.84	0.75	\checkmark	
1.008	90.0	110.0	0.009	150.0	0.150	5.5	14.745	\checkmark	0.83	0.37	0.90	0.75	\checkmark	
7.000	90.0	82.0	0.012	150.0	0.150	3.8	17.095	\checkmark	0.97	0.22	0.77	0.75	\checkmark	
7.005	90.0	110.0	0.009	150.0	0.150	5.4	14.745	\checkmark	0.83	0.36	0.90	0.75	\checkmark	
7.006	90.0	125.0	0.008	150.0	0.150	6.6	13.826	\checkmark	0.78	0.48	0.95	0.75	\checkmark	
1.009	90.0	150.0	0.007	150.0	0.150	8.6	12.612	\checkmark	0.71	0.68	1.07	0.77	\checkmark	
Notes:														
		-	Actual Discl	-		harge								
Proportio	nal Velo	city = Ac	tual Velocity	y/Full Bore	Velocity									
k _s = Pipe	Roughr	less Fac	tor											

** BS EN 752 (9.6.3.1 Page 61)

CLIFTON SCANNE	LL EMERS	ON ASSOC	CIATES	Job No.	18_086									
Project	Engine No	ode		Rev	1									
Location	Co. Meath	า		Date	31/07/2019									
Element	Foul Peak	Flow Calc	ulation			Clifton Scannell Emerson								
CALC BY	CD			Checked By	PF	Associates								
	Calcualtion based in EN 12056-2:2000 Waste Water Flow Rate = Q_{ww} = K x SQRT(SDU)													
K = Frequency Factor0.5ΣDU = Sum of Discharge UnitsDU flow rate based on System I														
		DU	Total DU											
Appliance	Total No.	(I/s)	(I/s)											
WC (6l cistern*)	56	2	112											
WHB	66	0.5	33											
Shower	11	0.6	6.6											
Urinal	11	0.8	8.8											
Sink	11	0.8	8.8											
Dishwasher	6	0.8	4.8											
Floor Drains (DN														
100)	60	2	120											
		ΣDU	294											
	Q _{ww} 8.57 l/s													
*Check cistern siz	*Check cistern size with Building Services Designers													


Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix I – Water Supply Calculations

www.csea.ie

Page 26 of 28

Project Number: 18_086 Project: EngineNode Data Storage Title: Engineering Planning Report - Drainage & Water Services

Appendix J – IW PCE Form

Pre-connection enquiry form

UISCE Eireann : irish WATER

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink.

Please refer to the **Guide to completing the pre-connection enquiry form** on page 13 of this document when completing the form.

* Denotes mandatory/ required field. Please note, if mandatory fields are not completed the application will be returned.

Section A | Applicant details

1 *Applicant details:

Registered company name (if applicable):																					
Trading name (if applicable):																					
Company registration number (if applicable):																					
f you are not a registered company/business, please provide the applicant's name:																					
*Contact name:																					
*Postal address:																					
*Eircode:																					
*Telephone:																					
Mobile:]					
*Email:																					
Agent details (if a	appl	lica	ble)):																	
Contact name:																					
Company name (if	fapı	plica	able):																	
Postal address:																					
Eircode:																					
Telephone:]						
Email:																					

2

3 *Please indicate whether it is the applicant or agent who should receive future correspondence in relation to the enquiry:

	Applicant						Age	nt												
e	ction B Site	details																		
	*Site address:																			
																				Γ
			I		I		_1							1						-
	*Irish Grid co-	ordinate	s of s	site:	E	Eastir	ngs ()	X)					N	orth	nings	; (Y)				
	*Irish Grid co- Eg. co-ordinate						-) 315	,878					nings 234,6					Γ
							-) 315	,878										
		es of GPO					-) 315	,878										
	Eg. co-ordinate	es of GPO	, O'Cc	onnel	ll St.,	Dubl	lin:	E(X	-	-	·):									Γ
	Eg. co-ordinate	es of GPO	, O'Cc	onnel	ll St.,	Dubl	lin:	E(X	-	-	·):									T
	Eg. co-ordinate	es of GPO	, O'Cc	onnel	ll St.,	Dubl	lin:	E(X	-	-	•):									T T
	Eg. co-ordinate *Local Author Local Authority	es of GPO	, O'Cc nted µ	planr	ning p	Dubl	lin:	E(X	-	-	·):				234,6	519				
	Eg. co-ordinate *Local Author Local Authority	es of GPO	, O'Co nted p missi	onnel planr	ning p	Dubl	lin: hissio	E(X	applic	able					234,6				No	
	Eg. co-ordinate *Local Author Local Authority	es of GPO	, O'Co nted p missi	onnel planr	ning p	Dubl	lin: hissio	E(X	applic	able		umb			234,6	519			No	

8 Please outline the domestic and/or industry/business use proposed:

Property type	Number of units		Property type	Number of units	Property type	Number of units
House			Apartments		Agricultural	
Office			School		Retail unit	
Residential care home			Institution		Industrial unit	
Hotel			Factory		Other	
Other (please spec	ify type)					

9 *Approximate start date of proposed development:

10 *Is the development multi-phased?

If 'Yes', application must include a master-plan identifying the development phases and the current phase number.

Yes

No

If 'Yes', please provide details of variations in water demand volumes and wastewater discharge loads due to phasing requirements.

11 *Please indicate the type of connection required by ticking the appropriate box below:

Water	Please go to Section D
Wastewater	Please go to Section E
Both	Please complete both Sections D and E

Sec	tion D Water connection and demand details		
12	*Is there an existing connection to public water mains at the site?	Yes	No
12.1	If yes, is this enquiry for an additional connection to one already installed?	Yes	No
12.2	If yes, is this enquiry to increase the size of an existing connection?	Yes	No
13	Approximate date water connection is required:		
14	*What diameter of water connection is required to service the develop	ment?	
17			
15	*Is more than one connection required to the public infrastructure		
	to service this development?	Yes	No
	If 'Yes', how many?		
	If 'Yes', how many?		

16 Please indicate the business water demand (shops, offices, schools, hotels, restaurants, etc.):

Post-development peak hour water demand	l/s
Post-development average hour water demand	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

17 Please indicate the industrial water demand (industry-specific water requirements):

Post-development peak hour water demand	l/s	
Post-development average hour water demand	l/s	

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

18 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?

19	What is the highest finished floo	r level of the proposed	l development above l	Malin Head Ordnance Datum
----	-----------------------------------	-------------------------	-----------------------	---------------------------

Yes	No
	Yes

m

Please include calculations on the attached sheet provided.

20

21	Are there fire flow requirements?	Yes	No	
	Additional fire flow requirements over and above those identified in O16-17		l/s	

Please include calculations on the attached sheet provided, and include confirmation of requirements from the Fire Authority.

Yes

No

22 Do you propose to supplement your potable water supply from other sources?

If 'Yes', please indicate how you propose to supplement your potable water supply from other sources (see **Guide to completing the application form** on page 12 of this document for further details):

Sec	tion E Wastewater connection and discharge details	
23	*Is there an existing connection to a public sewer at the site? Yes	No
23.1	If yes, is this enquiry for an additional connection to the one already installed? Yes	No
23.2	If yes, is this enquiry to increase the size of an existing connection? Yes	No
24 25	*Approximate date that wastewater connection is required:] mm
26	*Is more than one connection required to the public infrastructure to service this development? Yes	No
	If 'Yes', how many?	
27	Please indicate the commercial wastewater hydraulic load (shops, offices, schools, hotels, restaurar	nts, etc.):

Post-development peak discharge	l/s
Post-development average discharge	l/s

Please include calculations on the attached sheet provided.

28 Please indicate the industrial wastewater hydraulic load (industry-specific discharge requirements):

Post-development peak discharge	l/s
Post-development average discharge	l/s

Please include calculations on the attached sheet provided.

29 Wastewater organic load:

Characteristic	Max concentration (mg/l)	Average concentration (mg/l)	Maximum daily load (kg/day)
Biochemical oxygen demand (BOD)			
Chemical oxygen demand (COD)			
Suspended solids (SS)			
Total nitrogen (N)			
Total phosphorus (P)			
Other			

Temperature range	
pH range	

30 *Storm water run-off will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites, please indicate if the development intends discharging surface water to the combined wastewater collection system:

If 'Voc'	nlasca div	in reason fo	r discharge an	d comment (n adaauaa	/ of SUDS/attenua	tion measures	nronocod
ii ies,	please giv	16166301110	n uischarge an		ni auequacy	on sobstattenua	uon measures	proposeu.

31*Do you propose to pump the wastewater?Yes

If 'Yes', please include justification for your pumped solution with this application.

- 32 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?
- 33 What is the lowest finished floor level on site above Malin Head Ordnance Datum?

n

No

No

Yes

34 What is the proposed invert level of the pipe exiting the property to the public road?

Please provide the following additional information (all mandatory):

- Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details:
 - i. The scale shall be clearly indicated on the map.
 - ii. The boundaries shall be delineated in red.
 - iii. The site co-ordinates shall be marked on the site location map.
- > Details of planning and development exemptions (if applicable).
- > Calculations (calculation sheets provided below).
- Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure.
- > Conceptual design of the connection asset from the proposed development to the existing Irish Water infrastructure, including service conflicts, gradients, pipe sizes and invert levels.
- > Any other information that might help Irish Water assess this pre-connection enquiry.

Section G | Declaration

I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form.

I/We understand that any alterations made to this application must be declared to Irish Water.

The details that I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Any personal data you provide will be stored and processed by Irish Water and may be transferred to third parties for the purposes of the water and/or wastewater connection process. I hereby give consent to Irish Water to store and process my personal data and to transfer my personal data to third parties, if required, for the purposes of the connection process.

If you wish to revoke consent at any time or wish to see Irish Water's full Data Protection Notice, please see **https://www.water.ie/privacy-notice/**

Signature:		Date:]/	/		/[
------------	--	-------	--	----	---	--	----	--	--	--	--	--

Your full name (in BLOCK CAPITALS):

Irish Water will carry out a formal assessment based on the information provided on this form. Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to **newconnections@water.ie** or alternatively, post to:

Irish Water
PO Box 860
South City Delivery Office
Cork City

Please note that if you are sending us your application form and any associated documentation by email, the maximum file size that we can receive in any one email is 35MB.

Please note, if mandatory fields are not completed the application will be returned.

Irish Water is subject to the provisions of the Freedom of Information Act 2014 ("FOIA") and the codes of practice issued under FOIA as may be amended, updated or replaced from time to time. The FOIA enables members of the public to obtain access to records held by public bodies subject to certain exemptions such as where the requested records may not be released, for example to protect another individual's privacy rights or to protect commercially sensitive information. Please clearly label any document or part thereof which contains commercially sensitive information. Irish Water accepts no responsibility for any loss or damage arising as a result of its processing of freedom of information requests.

Calculations

Water demand

Fire flow requirements

Guide to completing the pre-connection enquiry form

This form should be completed by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure.

The Irish Water Codes of Practice are available at **www.water.ie** for reference.

Section A | Applicant Details

- **Question 1:** This question requires the applicant or company enquiring about the feasibility of a connection to identify themselves, their postal address, and to provide their contact details.
- **Question 2:** If the applicant has employed a consulting engineer or an agent to manage the enquiry on their behalf, the agent's address and contact details should be recorded here.
- **Question 3:** Please indicate whether it is the applicant or the agent who should receive future correspondence in relation to the enquiry.

Section B | Site details

- **Question 4:** This is the address of the site requiring the water/wastewater service connection and for which this enquiry is being made.
- **Question 5:** Please provide the Irish Grid co-ordinates of the proposed site. Irish grid positions on maps are expressed in two dimensions as Eastings (E or X) and Northings (N or Y) relative to an origin. You will find these coordinates on your Ordnance Survey map which is required to be submitted with an application.
- **Question 6:** Please identify the Local Authority that is or will be dealing with your planning application, for example Cork City Council.
- **Question 7:** Please indicate if planning permission has been granted for this application, and if so, please provide the planning permission reference number.

Section C | Development details

- **Question 8:** Please specify the number of different property/premises types by filling in the tables provided.
- **Question 9:** Please indicate the approximate commencement date of works on the development.
- **Question 10:** Please indicate if a phased building approach is to be adopted when developing the site. If so, please provide details of the phase master-plan and the proposed variation in water demand/wastewater discharge as a result of the phasing of the development.
- **Question 11:** Please indicate the type of connection required by ticking the appropriate box and proceed to complete the appropriate section or sections.

Section D | Water connection and demand details

- **Question 12:** Please indicate if a water connection already exists for this site.
- **Question 12.1:** Please indicate if this enquiry concerns an additional connection to one already installed on the site.
- **Question 12.2:** Please indicate if you are proposing to upgrade the water connection to facilitate an increase in water demand. Irish Water will determine what impact this will have on our infrastructure.
- **Question 13:** Please indicate the approximate date that the proposed connection to the water infrastructure will be required.
- **Question 14:** Please indicate what diameter of water connection is required to service this development.
- **Question 15:** Please indicate if more than one connection is required to service this development. Please note that the connection size provided may be used to determine the connection charge.
- **Question 16:** If this connection enquiry concerns a business premises, please provide calculations for the water demand and include your calculations on the calculation sheet provided. Business premises include shops, offices, hotels, schools, etc. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.

- **Question 17:** If this connection enquiry is for an industrial premises, please calculate the water demand and include your calculations on the calculation sheet provided. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). The peak demand for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- **Question 18:** Please specify the ground level at the location where connection to the public water mains will be made. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 19:** Please specify the highest finished floor level on site. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 20:** If storage is required, water storage capacity of 24-hour water demand must usually be provided at the proposed site. In some cases, 24-hour storage capacity may not be required, for example 24-hour storage for a domestic house would be provided in an attic storage tank. Please calculate the 24-hour water storage requirements and include your calculations on the attached sheet provided. Please also confirm that on-site storage is being provided by ticking the appropriate box.
- **Question 21:** The water supply system shall be designed and constructed to reliably convey the water flows that are required of the development including fire flow requirements by the Fire Authority. The Fire Authority will provide the requirement for fire flow rates that the water supply system will have to carry. Please note that while flows in excess of your required demand may be achieved in the Irish Water network and could be utilised in the event of a fire, Irish Water cannot guarantee a flow rate to meet your fire flow requirement. To guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development. Please include your calculations on the attached sheet provided, and further provide confirmation of the Fire Authority requirements.
- **Question 22:** Please identify proposed additional water supply sources, that is, do you intend to connect to the public water mains or the public mains and supplement from other sources? If supplementing public water supply with a supply from another source, please provide details as to how the potable water supply is to be protected from cross contamination at the premises.

Section E | Wastewater connection and discharge details

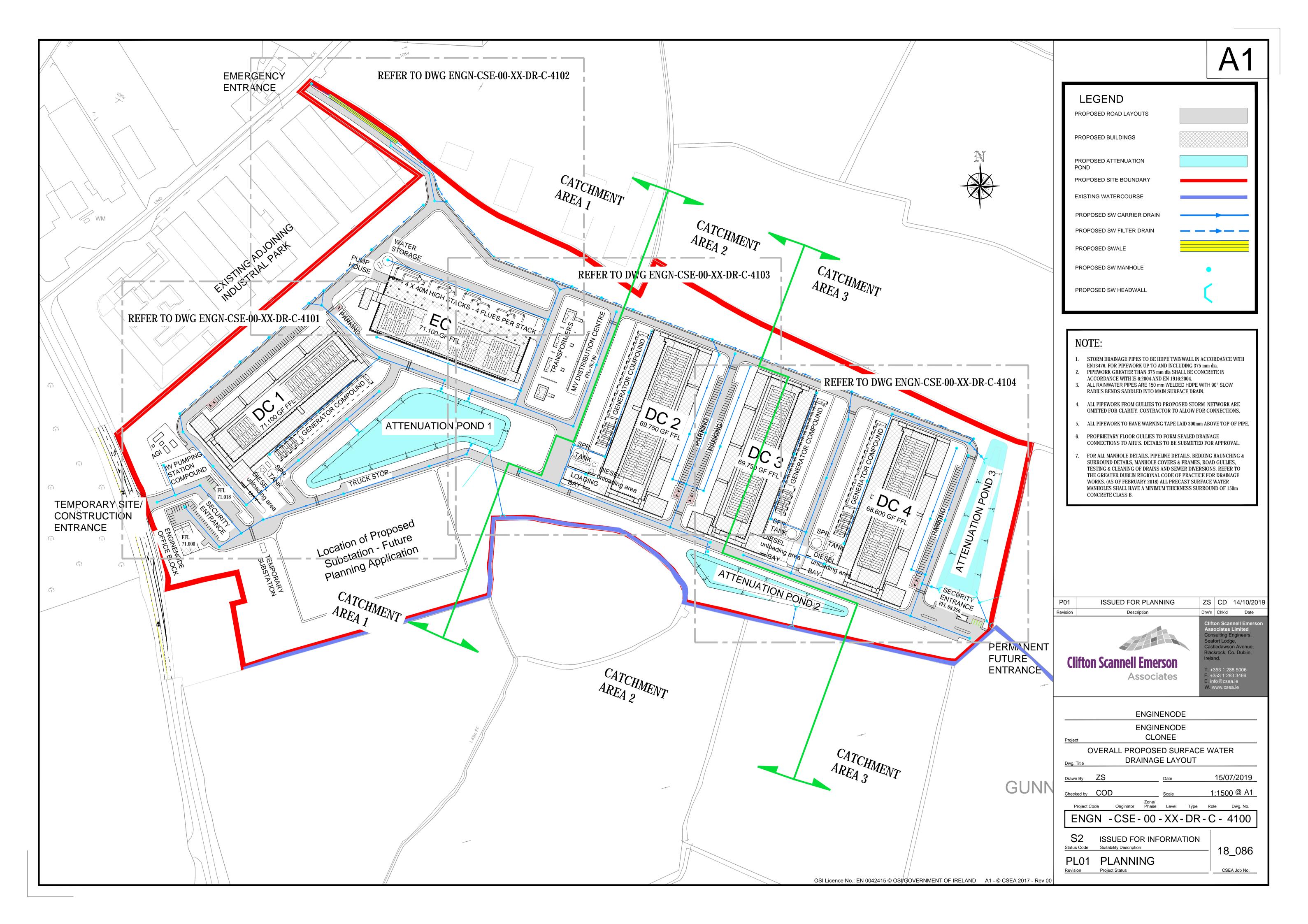
- **Question 23:** Please indicate if a wastewater connection to a public sewer already exists for this site.
- Question 23.1: Please indicate if this enquiry relates to an additional wastewater connection to one already installed.
- **Question 23.2:** Please indicate if you are proposing to upgrade the wastewater connection to facilitate an increased discharge. Irish Water will determine what impact this will have on our infrastructure.
- **Question 24:** Please specify the approximate date that the proposed connection to the wastewater infrastructure will be required.
- Question 25: Please indicate what diameter of wastewater connection is required to service this development.
- **Question 26:** Please indicate if more than one connection is required to service this development. Please indicate number required.
- **Question 27:** If this enquiry relates to a business premises, please provide calculations for the wastewater discharge and include your calculations on the attached sheet provided. Business premises include shops, offices, hotels, schools, etc. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.
- **Question 28:** If this enquiry relates to an industrial premises, please provide calculations for the wastewater discharge and include your calculations on the calculation sheet provided. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). The peak discharge for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.

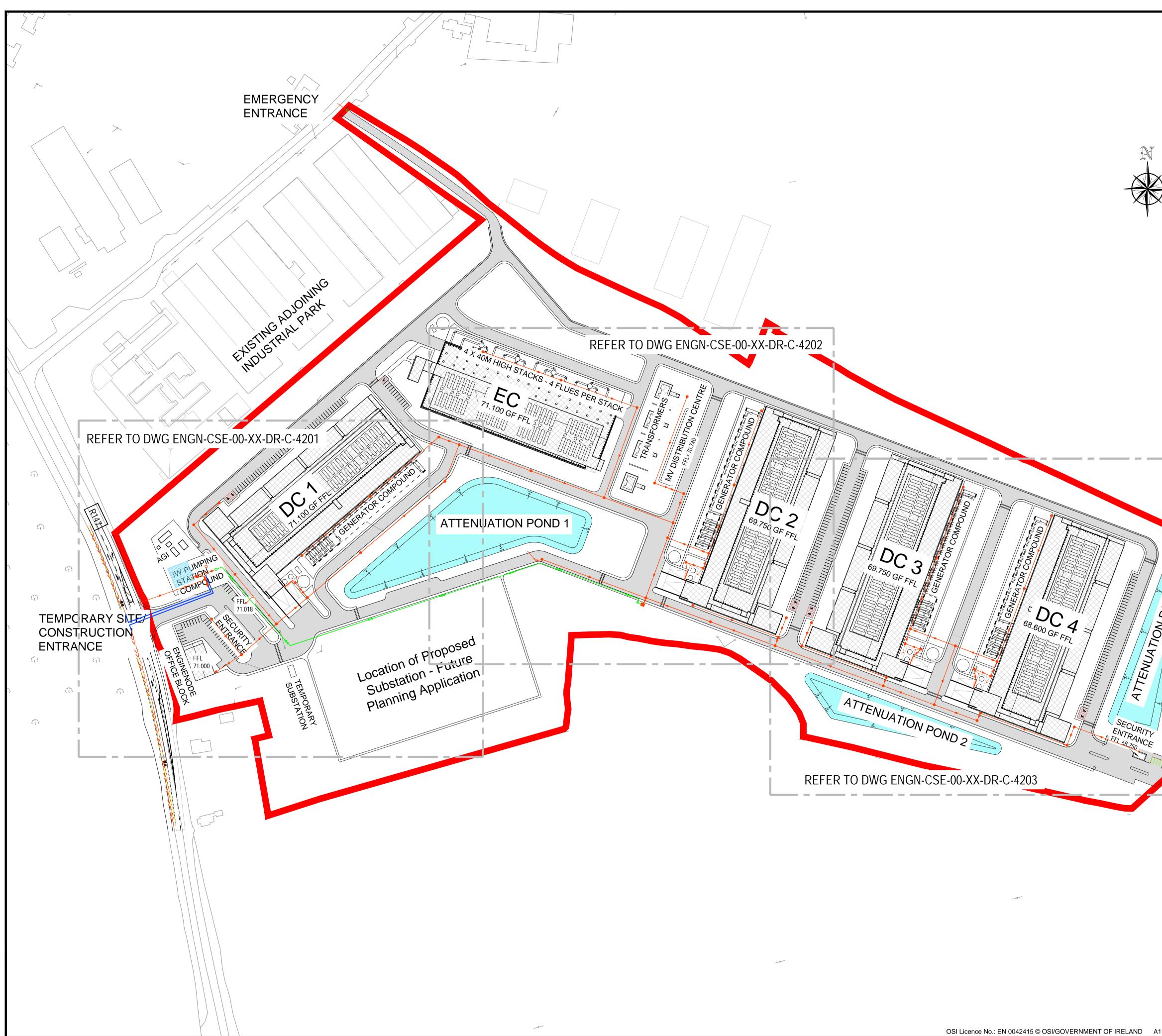
- **Question 29:** Please specify the maximum and average concentrations and the maximum daily load of each of the wastewater characteristics listed in the wastewater organic load table (if not domestic effluent), and also specify if any other significant concentrations are expected in the effluent. Please complete the table and provide additional supporting documentation if relevant. Note that the concentration shall be in mg/l and the load shall be in kg/day. Note that for business premises (shops, offices, schools, hotels, etc.) for which only domestic effluent will be discharged (excluding discharge from canteens/ restaurants which would require a Trade Effluent Discharge licence), there is no need to complete this question.
- **Question 30:** In exceptional circumstances, such as brownfield sites, where the only practical outlet for storm/ surface water is to a combined sewer, Irish Water will consider permitting a restricted attenuated flow to the combined sewer. Storm/surface water will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer and the applicant must demonstrate how the storm/surface water flow from the proposed site is minimised using sustainable urban drainage system (SUDS). This type of connection will only be considered on a case by case basis. Please advise if the proposed development intends discharging surface water to the combined wastewater collection system.
- **Question 31:** Please specify if the development needs to pump its wastewater discharge to gain access to Irish Water infrastructure.
- **Question 32:** Please specify the ground level at the location where connection to the public sewer will be made. This is required to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 33:** Please specify the lowest floor level of the proposed development. This is required in order to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 34:** Please specify the proposed invert level of the pipe exiting the property to the public road.

Section F | Supporting documentation

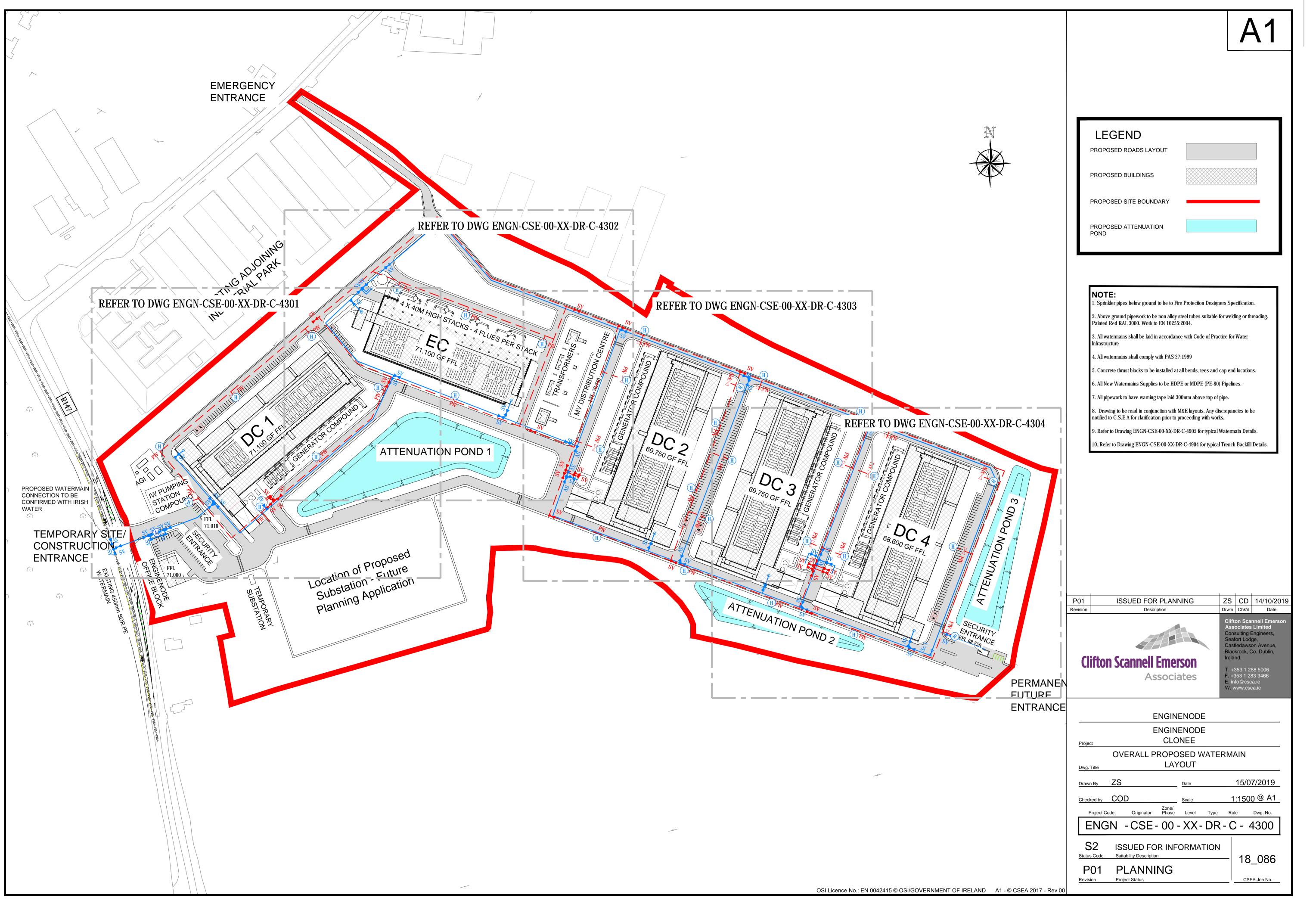
Please provide additional information as listed.

Section G | Declaration


Please review the declaration, sign, and return the completed application form to Irish Water by email or by post using the contact details provided in Section G.


Clifton Scannell Emerson Associates Limited, Civil & Structural Consulting Engineers Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland.

T. +353 1 288 5006 F. +353 1 283 3466 E. info@csea.ie W. www.csea.ie



Appendix B – Proposed Site Drawings (subject to concurrent planning application)

	A1
	LEGEND PROPOSED ROAD LAYOUTS
	PROPOSED BUILDINGS
	PROPOSED SITE BOUNDARY
	PROPOSED ATTENUATION
	POND PROPOSED FOUL SEWER LINE
	PROPOSED FOUL MANHOLE
	PROPOSED FOUL PETROL
	PROPOSED FOUL GULLY
	PROPOSED 80mmØ FOUL RISING MAIN PROPOSED STAND OFF
	MANHOLE.
	PROPOSED 140mmØ FOUL RISING MAIN CONNECTION EXISTING 140mmØ FOUL RISING ->>->>->>->>->>- MAIN
	PROPOSED ATTENUATION POND
1	
	PROPOSED ATTENUATION POND
	 POND NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W-C05-5030-03) 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 3. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD
ERMANEN	POND NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W-C05-5030-03) 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 3. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS P01 ISSUED FOR PLANNING ZS CD 14/10/2019
	POND NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRSH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W-Co5-5030-03). 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 3. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS
ERMANEN JTURE _	POND UNDEE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W-C05-5030-03). 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS. 3. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS. 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS.
ERMANEN JTURE _	POND NOTE: 1 WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE RISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W:C05-5030-03). 2 REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 2 REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2 NOTE 2 CD 2 CD 2 CD 2 CD 2 CD 2 DESCRIPTION 2 CD 2 Date 3 Date 2 Date 3 Date 3 Date 3 Date 3 Date
ERMANEN JTURE _	POND NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W-C05-5030-03) 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 3. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DESCRIPTION CONSULTING ENGINEERS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DESCRIPTION CONSULTING ENGINEERS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DESCRIPTION CONSULTING ENGINEERS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DESCRIPTION CONSULTING ENGINEERS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DESCRIPTION CONSULTING ENGINEERS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DESCRIPTION CONSULTING ENGINEERS 2. REFER TO DRAWING TRENCH DESCRIPTION CONSULTER
ERMANEN JTURE _	POND NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (Ww.Cob.5030-03) 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 3. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS
ERMANEN JTURE _	POND Description NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (W-COS-503-03). 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4940 FOR PUMPING STATION DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. REFER TO DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRAWING NO. ENGN-CSE-00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS Date 2. MILL DRA
ERMANEN JTURE _	POND NOTE: 1. WASTEWATER PIPEWORK SHALL COMPLY WITH SECTION 3.13 OF THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE (With Co5-5030-03) 2. REFER TO DRAWING NO. ENGN-CSE.00-ZZ-DR-C-4910 FOR PUMPING STATION DETRILS 3. REFER TO DRAWING NO. ENGN-CSE.00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO DRAWING NO. ENGN-CSE.00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 3. REFER TO DRAWING NO. ENGN-CSE.00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS 2. REFER TO BRAWING NO. ENGN-CSE.00-ZZ-DR-C-4912 FOR STANDARD TRENCH DETAILS D1 ISSUED FOR PLANNING ZX CD 1 ISSUED FOR PLANNING ZX CD 1 ISSUED FOR PLANNING Description Drwn Clifton Scannell Emerson Associates Drwn Associates Intereson Associates Nuwu csea.ie Www.csea.ie Www.csea.ie Www.csea.ie Dreg Title ENGINENODE CLONEE OVERALL PROPOSED FOUL WATER Dreg Title OVERALL PROPOSED FOUL WATER Dreg No. Dreg Title LAYOUT Trans BY ZS Date 15/07/2019 Checked by COD Scale 1:1500 @

Appendix C – Irish Water CoF

Conor Doherty

Seafort Lodge Castledawson Ave. Blackrock Dublin A94P768

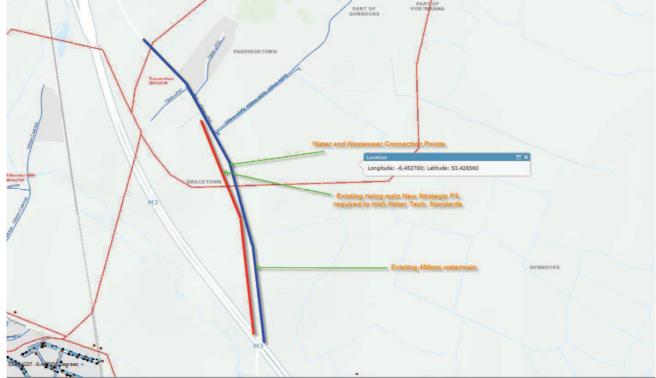
29 May 2020

Re: CDS19006045 pre-connection enquiry - Subject to contract | Contract denied Connection for Business Connection of 6 unit(s) at Bracetown, Clonee, Meath

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Bracetown, Clonee, Meath (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>					
Water Connection	Feasible without infrastructure upgrades by Irish Water					
Wastewater Connection	Feasible Subject to upgrades					
SITE SPECIFIC COMMENTS						
	The connection offer for the entire 5 No. Building proposed development will be made limiting peak flow to 15.56l/s with an annual limit of 7673 m3 . Annual demand should not exceed 7673 m3 without consultation with Irish Water.					
	7673 m3 allows for:					
Water Connection	• Domestic Demand (3696 m3)					
	Industrial Demand (3977 m3)					
	If the customer requires to refill their storage during a summer period or needs to go over their annual allowance, they should in the first instance contact Irish Water. It will be a requirement that a meter that can be hooked up to our telemetry system and a flow control valve are installed as part of the connection.					


Uis ce Éi reann Bosca OP 448 Oifig Sheach*a*dta na Cathrach Theas Cathair Chorc*a*í

> Irish Water PO Box 448, South City Delivery Office, Cork City.

> www.water.ie

REV012

Wastewater Connection	A strategic pump station is required to serve the proposed development and catchment subject to an Agreement with Irish Water to be outlined prior to the connection application stage. Irish Water does not currently have any plans to carry out the works required.	
this development shall com Details and Codes of Pract	n of the Water & Wastewater pipes and related infrastructure to be installed in ply with the Irish Water Connections and Developer Services Standard ice that are available on the Irish Water website. Irish Water reserves the right ements with Codes of Practice and these will be issued with the connection	

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Paul Fuller from the design team on 018230382 or email PFuller@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

M Buyes

Maria O'Dwyer Connections and Developer Services

Appendix D – Surface Water Drainage Calculations

Clifton S										Pag	re 1
Seefort I	odge C	Castled	awson .		ginenode (
Blackrock	2			Sui	rface Watı	re Net	work	1		2	<u> </u>
County Du										M	
Date 01/0				Des	signed by	Zvoni	mir S	alk	ic		
File GIS	COMPOUN	ID.MDX		Che	ecked by C	Conor	Doher	ty		DI	ainag
Micro Dra	inage			Net	work 2017	1.1.2				·	
	STO	RM SEW	<u>er desi</u>	<u>GN by </u>	the Modif:	ied Ra	ationa	1 M	ethoo	<u>1</u>	
			Desi	.gn Cri	teria for.	Stor	<u>m</u>				
		Pip	pe Sizes	STANDAF	RD Manhole S	Sizes S	STANDAR	D			
					l - Scotlan	d and	Ireland	ł			
	Re	turn Per	iod (yea	,	1	7 -1 -1	1 / /			PIMP (%	,
			Mo-60 (Rati	mm) 17. or 0.	800 323	Add F Min	imum Ba	orima ackd	ate Un rop He	iange (a ight (n	s) n) 0.20
	Maxim	um Rainf	all (mm/								n) 1.50
Maximum I					30 Min Des	ign De	pth for	c Op	timisa	tion (r	n) 0.75
			-		000 Min 750 Mi				-	ly (m/s. .on (1:)	
		00110 110			ith Level S	-		, p 0 1 1		(11)	-,
				2)iagram fo						
		Time			ea Time			Ar	22		
		(mins)		-	a) (mins)		-				
		0-4	0.122	4-8 3.	569 8-12	4.205	12-16	0.6	29		
			metel N	naa Cant	······································	· · · ·	- E - 4				
			TOTAL A	rea Cont	ributing (h	(a) = 8	3.324				
			Total	Pipe Vo	olume (m³) =	= 530.7	62				
			Networ	k Desi	gn Table :	for St	torm				
			« - Ind	dicates	pipe capaci	_ty < f	flow				
	ngth Fal (m) (m				Base Flow (l/s)	k (mm)	HYD SECT		Secti	on Type	e Auto Desig
s3.000 51	.577 0.1	72 299.9	9 0.276	5.00	0.0	0.600	0	300	Pipe/	'Conduit	с п
S3.001 25				0.00		0.600	0		-	Conduit	
s4.000 19	.881 0.0	66 300.0	0.032	5.00	0.0	0.600	0	300	Pipe/	'Conduit	t 🔒
											-
			N€	etwork	Results T	able					
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)		Add F		Vel (m/s)	Cap (1/s)	Flow (1/s)
<u> </u>											
S3.000 S3.001	44.46 43.09		69.445 69.273	0.276 0.327	0.0			0.0 0.0	0.90 0.90		
S4.000	46.34	5.37	69.700	0.032	0.0	0.0		0.0	0.90	63.8	4.0
51.000	10.01	0.07		5.002	0.0	0.0		- • •			1.0

Clifton Scannell Emerson Associa	Page 2	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micco
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S5.000	35.356	0.118	300.0	0.115	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
	27.383 60.062			0.045 0.124	0.00 0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	d
	25.151 82.609			0.083 0.152	0.00 0.00		0.600 0.600	0 0		Pipe/Conduit Pipe/Conduit	ъ ъ
	86.037 30.330			0.230 0.105	5.00 0.00		0.600 0.600	0 0		Pipe/Conduit Pipe/Conduit	d
S7.000	86.165	0.191	451.1	0.144	5.00	0.0	0.600	0	450	Pipe/Conduit	ð
S6.002	17.094	0.038	450.0	0.120	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
S8.000	88.659	0.197	450.0	0.227	5.00	0.0	0.600	0	450	Pipe/Conduit	ð
S6.003	8.806	0.020	450.0	0.216	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
S3.004	87.772	0.146	600.0	0.099	0.00	0.0	0.600	0	600	Pipe/Conduit	•
S9.000	38.102	0.102	373.5	0.129	5.00	0.0	0.600	0	375	Pipe/Conduit	ð

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S5.000	45.40	5.65	69.750	0.115	0.0	0.0	0.0	0.90	63.8	14.1	
S4.001 S4.002	43.83 40.82		69.632 69.541	0.192 0.316	0.0	0.0	0.0	0.90 0.90	63.7 63.8	22.8 34.9	
S3.002 S3.003	39.76 36.71		69.039 68.983	0.725 0.877	0.0	0.0	0.0		151.4 151.4	78.1 87.2	
S6.000 S6.001	42.83 41.41		<mark>69.117</mark> 68.926	0.230 0.335	0.0	0.0	0.0		151.4 150.9	26.7 37.6	
\$7.000	42.82	6.51	69.049	0.144	0.0	0.0	0.0	0.95	151.2	16.7	
S6.002	40.65	7.34	68.858	0.599	0.0	0.0	0.0	0.95	151.4	66.0	
S8.000	42.71	6.55	69.017	0.227	0.0	0.0	0.0	0.95	151.4	26.3	
S6.003	40.28	7.49	68.820	1.043	0.0	0.0	0.0	0.95	151.4	113.8	
S3.004	34.11	10.64	68.650	2.019	0.0	0.0	0.0	0.99	279.0	186.5	
S9.000	45.30	5.68	69.159	0.129	0.0	0.0	0.0	0.93	102.9	15.9	
			C	1982-201	7 XP Solut	tions					

Clifton Scannell Emerson Associa	Page 3	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S9.001	38.959	0.104	375.0	0.123	0.00	0.0	0.600	0	375	Pipe/Conduit	æ
S9.002	40.673	0.108	375.0	0.047	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
s10.000	38.187	0.102	374.4	0.141	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S9.003	11.969	0.032	375.0	0.160	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S9.004	10.878	0.029	375.0	0.034	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S3.005	38.209	0.076	500.0	0.065	0.00	0.0	0.600	0	600	Pipe/Conduit	0
S3.006	9.872	0.020	500.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ð
S3.007	16.960	0.034	500.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S11.000	76.899	0.171	450.0	0.521	5.00	0.0	0.600	0	450	Pipe/Conduit	ð
S11.001	17.089	0.038	450.0	0.069	0.00	0.0	0.600	0	450	Pipe/Conduit	Ť
S11.002	44.455	0.099	450.0	0.210	0.00	0.0	0.600	0	450	Pipe/Conduit	<u> </u>
S11.003	49.696	0.110	450.0	0.172	0.00	0.0	0.600	0	450	Pipe/Conduit	- Č
S11.004	66.906	0.149	450.0	0.156	0.00	0.0	0.600	0	525	Pipe/Conduit	- Č
S11.005	62.002	0.124	500.0	0.143	0.00	0.0	0.600	0	525	Pipe/Conduit	
S12.000	41.629	0.111	375.0	0.162	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S11.006	14.829	0.028	529.6	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	ď

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S9.001 S9.002	43.19 41.23		69.057 68.953	0.252 0.299	0.0	0.0	0.0		102.7	29.5 33.4	
S10.000	45.30	5.68	68.947	0.141	0.0	0.0	0.0	0.93	102.8	17.3	
\$9.003	40.69		68.845	0.601	0.0	0.0	0.0		102.7	66.2	
S9.004	40.21		68.813	0.635	0.0	0.0	0.0		102.7	69.2	
S3.005	33.20		68.504	2.719	0.0	0.0	0.0		306.0		
S3.006	32.98		68.428	2.719	0.0	0.0	0.0		306.0		
S3.007	32.60	11.64	68.408	2.719	0.0	0.0	0.0	1.08	306.0	244.5	
S11.000	43.29	6.35	69.267	0.521	0.0	0.0	0.0	0.95	151.4	61.1	
S11.001	42.45	6.65	69.096	0.590	0.0	0.0	0.0	0.95	151.4	67.9	
S11.002	40.44	7.42	69.058	0.800	0.0	0.0	0.0	0.95	151.4	87.6	
S11.003	38.46	8.29	68.959	0.972	0.0	0.0	0.0	0.95	151.4	101.2	
S11.004	36.33	9.36	68.774	1.128	0.0	0.0	0.0	1.05	227.2	111.0	
S11.005	34.51	10.40	68.652	1.270	0.0	0.0	0.0	0.99	215.4	118.7	
S12.000	45.10	5.75	68.925	0.162	0.0	0.0	0.0	0.93	102.7	19.8	
S11.006	34.09	10.65	68.528	1.433	0.0	0.0	0.0	0.97	209.2	132.3	
			©1	982-201	7 XP Solut	ions					

Clifton Scannell Emerson Associa	Page 4	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
S11.007	128.614	0.100	1286.1	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	0
s13.000	66.564	0.222	299.8	0.136	5.00	0.0	0.600	0	300	Pipe/Conduit	0
S13.001	62.672	0.179	350.1	0.215	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S13.002	12.828	0.034	377.3	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S14.000	51.225	0.137	373.9	0.379	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S14.001	11.430	0.030	375.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	Ť
S13.003	76.069	0.190	400.4	0.171	0.00	0.0	0.600	0	375	Pipe/Conduit	6
S15.000	63.020	0.140	450.0	0.266	5.00	0.0	0.600	0	450	Pipe/Conduit	0
S15.001	79.775	0.112	712.8	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	Ť
s13.004	67.190	0.140	479.9	0.420	0.00	0.0	0.600	0	600	Pipe/Conduit	6
S13.005	8.730	0.020	436.5	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ď
S13.006	70.784	0.100	707.8	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	•
S16.000	30.634	0.082	373.6	0.048	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
S16.001	71.701	0.191	375.4	0.224	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S16.002	64.030	0.142	450.9	0.272	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
S16.003	9.527	0.021	453.7	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S11.007	29.45	14.13	68.450	1.433	0.0	0.0	0.0	0.62	133.3	132.3	
S13.000	43.63	6.23	69.585	0.136	0.0	0.0	0.0	0.90	63.8	16.0	
S13.001	40.71	7.31	69.288	0.350	0.0	0.0	0.0	0.96	106.3	38.6	
S13.002	40.15	7.54	69.109	0.350	0.0	0.0	0.0	0.93	102.4	38.6	
S14.000	44.56	5.92	69.800	0.379	0.0	0.0	0.0	0.93	102.8	45.7	
S14.001	43.94	6.12	69.663	0.379	0.0	0.0	0.0	0.93	102.7	45.7	
S13.003	37.10	8.95	69.075	0.900	0.0	0.0	0.0	0.90	99.3	90.4	
S15.000	44.00	6.10	69.322	0.266	0.0	0.0	0.0	0.95	151.4	31.7	
S15.001	39.40	7.87	69.182	0.266	0.0	0.0	0.0	0.75	119.9	31.7	
S13.004	35.23	9.97	68.660	1.585	0.0	0.0	0.0	1.10	312.4	151.2	
S13.005	35.01	10.09	68.520	1.585	0.0	0.0	0.0	1.16	327.7	151.2	
S13.006	32.96	11.39	68.450	1.585	0.0	0.0	0.0	0.91	256.6	151.2	
S16.000	45.46	5.63	69.684	0.048	0.0	0.0	0.0	0.81	57.1	6.0	
S16.001	41.72	6.92	69.527	0.272	0.0	0.0	0.0	0.93	102.6	30.8	
S16.002	39.01	8.04	69.261	0.544	0.0	0.0	0.0	0.95	151.2	57.5	
S16.003	38.64	8.21	69.119	0.544	0.0	0.0	0.0	0.95	150.8	57.5	
			©1	982-201	7 XP Solut	ions					

Clifton Scannell Emerson Associa	Page 5	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s17.000	32.276	0.108	298.9	0.104	5.00	0.0	0.600	0	300	Pipe/Conduit	•
S17.001	10.407	0.035	297.3	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
S16.004	31.398	0.070	448.5	0.087	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
S18.000	83.500	0.167	500.0	0.519	5.00	0.0	0.600	0	525	Pipe/Conduit	ð
S18.001	83.500	0.167	500.0	0.358	0.00	0.0	0.600	0	525	Pipe/Conduit	đ
S16.005	73.956	0.123	600.0	0.220	0.00	0.0	0.600	0	525	Pipe/Conduit	ď
S19.000	74.921	0.200	374.6	0.208	5.00	0.0	0.600	0	375	Pipe/Conduit	0
S19.001	74.921	0.200	374.6	0.217	0.00	0.0	0.600	0	375	Pipe/Conduit	Ť
S16.006	14.850	0.025	594.0	0.059	0.00	0.0	0.600	0	600	Pipe/Conduit	۵
S20.000	55.222	0.158	350.0	0.167	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S20.001	64.122	0.183	350.4	0.188	0.00	0.0	0.600	0	375	Pipe/Conduit	0 0
S20.002	60.444	0.173	350.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S16.007	44.617	0.059	756.2	0.116	0.00	0.0	0.600	0	750	Pipe/Conduit	0
S16.008	8.824	0.021	420.2	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	ď

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S17.000	45.58	5.59	69.400	0.104	0.0	0.0	0.0	0.90	63.9	12.8	
s17.001	44.97		69.292	0.104	0.0	0.0	0.0	0.91	64.1	12.8	
S16.004	37.49	8.76	69.098	0.735	0.0	0.0	0.0	0.95	151.6	74.6	
S18.000	43.14	6.40	69.295	0.519	0.0	0.0	0.0	0.99	215.4	60.6	
S18.001	39.56	7.80	69.128	0.877	0.0	0.0	0.0	0.99	215.4	94.0	
S16.005	34.98	10.12	68.953	1.832	0.0	0.0	0.0	0.91	196.4	173.5	
S19.000	43.30	6.34	69.380	0.208	0.0	0.0	0.0	0.93	102.7	24.4	
S19.001	39.82	7.68	69.180	0.425	0.0	0.0	0.0	0.93	102.7	45.8	
S16.006	34.56	10.37	68.755	2.316	0.0	0.0	0.0	0.99	280.4	216.7	
S20.000	44.44	5.96	69.470	0.167	0.0	0.0	0.0	0.96	106.3	20.0	
S20.001	41.33	7.07	69.312	0.354	0.0	0.0	0.0	0.96	106.3	39.7	
S20.002	38.85	8.11	69.129	0.354	0.0	0.0	0.0	0.96	106.3	39.7	
S16.007	33.39	11.10	68.580	2.787	0.0	0.0	0.0	1.01	446.1	252.0	
S16.008	33.23	11.21	68.521	2.787	0.0	0.0	0.0	1.36	600.3	252.0	
			~ 4	000 001							
			©]	982-201	7 XP Solut	lons					

Clifton Scannell Emerson Associa	Page 6	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u>u</u>
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)		-			Base Flow (l/s)		HYD SECT		Section Type	Auto Design
S16.009	48.419	0.100	484.2	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	•
S3.008	70.492	0.050	1409.8	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	

<u>Network Results Table</u>

PN	Rain (mm/hr)		•		Σ Base Flow (l/s)				-		
S16.009	32.30	11.85	68.450	2.787	0.0	0.0	0.0	1.26	558.9	252.0	
S3.008	27.79	15.73	68.350	8.524	0.0	0.0	0.0	0.74	325.3«	641.5	

Clifton Scannell Emerson Associates								
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Watre Network 1	<u>Y</u>						
County Dublin		Micro						
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage						
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye						
Micro Drainage	Network 2017.1.2							

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Bac:
SWMH-20.1	71.010	1.565	Open Manhole	1200	s3.000	69.445	300				
SWMH-20.2	71.000	1.727	Open Manhole	1200	S3.001	69.273	300	S3.000	69.27	300	
SWMH-21.1	71.397	1.697	Open Manhole	1200	S4.000	69.700	300				
SWMH-22.1	71.720	1.970	Open Manhole	1200	s5.000	69.750	300				
SWMH-21.2	71.567	1.935	Open Manhole	1200	S4.001	69.632	300	S4.000	69.63	1 300	
								S5.000	69.63	2 300	
SWMH-21.3	71.143	1.602	Open Manhole	1200	S4.002	69.541	300	S4.001	69.54	L 300	
SWMH-20.3	71.000	1.961	Open Manhole	1350	S3.002	69.039	450	S3.001	69.18	300	
								S4.002	69.34	L 300	
SWMH-20.4	71.000	2.017	Open Manhole	1350	s3.003	68.983	450	S3.002	68.983	3 450	
SWMH-1.1	70.560	1.443	Open Manhole	1350	S6.000	69.117	450				
SWMH-1.2	70.600	1.674	Open Manhole	1350	S6.001	68.926	450	S6.000	68.926	5 450	
SWMH-2.1	70.560	1.511	Open Manhole	1350	S7.000	69.049	450				
SWMH-1.3	70.600	1.742	Open Manhole	1350	S6.002	68.858	450	S6.001	68.859	450	
								S7.000	68.858	3 450	
SWMH-3.1	70.560	1.543	Open Manhole	1350	S8.000	69.017	450				
SWMH-1.4	70.600	1.780	Open Manhole	1350	S6.003	68.820	450	S6.002	68.820	450	
								S8.000	68.820) 450	
SWMH-20.5	70.645	1.995	Open Manhole	1500	S3.004	68.650	600	S3.003	68.800) 450	
								S6.003	68.800	450	
SWMH-4.1	70.316	1.157	Open Manhole	1350	S9.000	69.159	375				
SWMH-4.2	70.316	1.259	Open Manhole	1350	S9.001	69.057	375	S9.000	69.05	375	
SWMH-4.3	70.247	1.294	Open Manhole	1350	S9.002	68.953	375	S9.001	68.953	375	
SWMH-5.1	70.420	1.473	Open Manhole	1350	S10.000	68.947	375				
SWMH-4.4	70.450	1.605	Open Manhole	1350	S9.003	68.845	375	S9.002	68.84	375	
								S10.000	68.84	375	
SWMH-4.5	70.552	1.739	Open Manhole	1350	S9.004	68.813	375	S9.003	68.81	3 375	
SWMH-20.6	70.645	2.141	Open Manhole	1500	S3.005	68.504	600	S3.004	68.504	600	
								S9.004	68.78	1 375	
SWMH-20.7	70.645	2.217	Open Manhole	1500	S3.006	68.428	600	S3.005	68.428	600	
SWMH-20.8	70.806	2.399	Open Manhole	1500	S3.007	68.408	600	S3.006	68.408	600	
SWMH-10.1	70.778	1.511	Open Manhole	1350	S11.000	69.267	450				
SWMH-10.2	71.138	2.042	Open Manhole	1350	S11.001	69.096	450	S11.000			
SWMH-10.3	70.725	1.667	Open Manhole		S11.002	69.058	450	S11.001			
			Open Manhole	1350	S11.003	68.959	450	S11.002	68.95	450	
			Open Manhole	1500	S11.004	68.774	525	S11.003	68.84	9 450	
SWMH-10.6	70.525	1.900	Open Manhole	1500	S11.005	68.652	525	S11.004	68.625	5 525	
SWMH-11.1	70.630	1.705	Open Manhole	1350	S12.000	68.925	375				
		•	©198	2-2017 XI	? Solut	ions					

Clifton Scannell Emerson Associa	Page 8	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	4
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainade
File GIS COMPOUND.MDX	Checked by Conor Doherty	Dialitaye
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter	Bac
SWMH-10.7	70.200	1.672	Open Manhole	1500	S11.006	68.528	525	s11.005	68.52	3 525	
								S12.000	68.81	1 375	
SWMH-10.8	70.692	2.242	Open Manhole	1500	S11.007	68.450	525	S11.006	68.500) 525	
SWMH-30.1	71.234	1.649	Open Manhole	1200	S13.000	69.585	300				
SWMH-30.2	71.156	1.868	Open Manhole	1350	S13.001	69.288	375	S13.000	69.36	3 300	
SWMH-30.3	71.151	2.042	Open Manhole	1350	S13.002	69.109	375	S13.001	69.10	375	
SWMH-31.1	71.000	1.200	Open Manhole	1350	S14.000	69.800	375				
SWMH-31.2	71.003	1.340	Open Manhole	1350	S14.001	69.663	375	S14.000	69.66	3 375	
SWMH-30.4	71.026	1.951	Open Manhole	1350	S13.003	69.075	375	S13.002	69.07	5 375	
								S14.001	69.63	3 375	
SWMH-32.1	70.939	1.617	Open Manhole	1350	S15.000	69.322	450				
SWMH-32.2	70.950	1.768	Open Manhole	1350	S15.001	69.182	450	S15.000	69.18	2 450	
SWMH-30.5	71.091	2.431	Open Manhole	1500	S13.004	68.660	600	S13.003	68.88	5 375	
								S15.001	69.07	450	
SWMH-30.6	70.443	1.923	Open Manhole	1500	S13.005	68.520	600	S13.004	68.520) 600	
SWMH-30.7	70.200	1.750	Open Manhole	1500	S13.006	68.450	600	S13.005	68.50	600	
SWMH-40.1	71.060	1.376	Open Manhole	1200	S16.000	69.684	300				
SWMH-40.2	71.035		Open Manhole	1350	S16.001	69.527	375	S16.000	69.60	2 300	
SWMH-40.3	70.750	1.489	Open Manhole	1350	S16.002	69.261	450	S16.001	69.33	5 375	
SWMH-40.4	71.175	2.056	Open Manhole	1350	S16.003	69.119	450	S16.002	69.11	9 450	
SWMH-44.1	70.593	1.193	Open Manhole	1200	S17.000	69.400	300				
SWMH-44.2	70.931	1.639	Open Manhole	1200	S17.001	69.292	300	S17.000	69.29	2 300	
SWMH-40.5	71.270	2.172	Open Manhole	1350	S16.004	69.098	450	S16.003	69.09	3 450	
								S17.001	69.25	7 300	
SWMH-41.1	70.890	1.595	Open Manhole	1500	S18.000	69.295	525				
SWMH-41.2	70.831	1.703	Open Manhole	1500	S18.001	69.128	525	S18.000	69.12	3 525	
SWMH-40.6	70.940	1.987	Open Manhole	1500	S16.005	68.953	525	S16.004	69.02	3 450	
								S18.001	68.96	L 525	
SWMH-42.1	70.950	1.570	Open Manhole	1350	S19.000	69.380	375				
SWMH-42.2	70.950	1.770	Open Manhole	1350	S19.001	69.180	375	S19.000	69.18) 375	
SWMH-40.7	70.800	2.045	Open Manhole	1500	S16.006	68.755	600	S16.005	68.830) 525	
								S19.001	68.980) 375	
			Open Manhole		S20.000	69.470	375				
			Open Manhole		S20.001	69.312	375	S20.000	69.31		
SWMH-43.3			Open Manhole		S20.002	69.129		S20.001			
SWMH-40.8	70.840	2.260	Open Manhole	1800	S16.007	68.580	750	S16.006	68.73) 600	
								S20.002	68.95	7 375	
SWMH-40.9	70.340	1.819	Open Manhole	1800	S16.008	68.521	750	S16.007	68.52	L 750	
			©198	2-2017 XI	P Solut	ions					

Clifton Scannell Emerson Associates								
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Watre Network 1	<u> </u>						
County Dublin		Micro						
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage						
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamarje						
Micro Drainage	Network 2017.1.2	1						

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes Inve Level	rt	Diameter ((mm)
SWMH-40.10	70.200	1.750	Open Manhole	1800	S16.009	68.450	750	S16.008	68	.500	750
SWMH-OUTFALL	70.000	1.650	Open Manhole	1800	S3.008	68.350	750	s3.007	68	.374	600
								s11.007	68	.350	525
								S13.006	68	.350	600
								S16.009	68	.350	750
SWMH-	69.957	1.657	Open Manhole	0		OUTFALL		S3.008	68	.300	750

Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee						
Blackrock	Surface Watre Network 1	L.					
County Dublin		Micro					
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage					
File GIS COMPOUND.MDX	Checked by Conor Doherty	Dialitage					
Micro Drainage	Network 2017.1.2	·					

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.000	0	300	SWMH-20.1	71.010	69.445	1.265	Open Manhole	1200
S3.001	0	300	SWMH-20.2	71.000	69.273	1.427	Open Manhole	1200
S4.000	0	300	SWMH-21.1	71.397	69.700	1.397	Open Manhole	1200
S5.000	0	300	SWMH-22.1	71.720	69.750	1.670	Open Manhole	1200
S4.001	0	300	SWMH-21.2	71.567	69.632	1.635	Open Manhole	1200
S4.002	0	300	SWMH-21.3	71.143	69.541	1.302	Open Manhole	1200
S3.002	0	450	SWMH-20.3	71.000	69.039	1.511	Open Manhole	1350
S3.003	0	450	SWMH-20.4	71.000	68.983	1.567	Open Manhole	1350
S6.000	0	450	SWMH-1.1	70.560	69.117	0.993	Open Manhole	1350
S6.001	0	450	SWMH-1.2	70.600	68.926	1.224	Open Manhole	1350
S7.000	0	450	SWMH-2.1	70.560	69.049	1.061	Open Manhole	1350
S6.002	0	450	SWMH-1.3	70.600	68.858	1.292	Open Manhole	1350
S8.000	0	450	SWMH-3.1	70.560	69.017	1.093	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.000	51.577	299.9	SWMH-20.2	71.000	69.273	1.427	Open Manhole	1200
S3.001	25.093	298.7	SWMH-20.3	71.000	69.189	1.511	Open Manhole	1350
S4.000	19.881	300.0	SWMH-21.2	71.567	69.634	1.633	Open Manhole	1200
s5.000	35.356	300.0	SWMH-21.2	71.567	69.632	1.635	Open Manhole	1200
S4.001	27.383	300.9	SWMH-21.3	71.143	69.541	1.302	Open Manhole	1200
S4.002	60.062	300.3	SWMH-20.3	71.000	69.341	1.359	Open Manhole	1350
S3.002	25.151	450.0	SWMH-20.4	71.000	68.983	1.567	Open Manhole	1350
s3.003	82.609	450.0	SWMH-20.5	70.645	68.800	1.395	Open Manhole	1500
S6.000	86.037	450.0	SWMH-1.2	70.600	68.926	1.224	Open Manhole	1350
S6.001	30.330	452.7	SWMH-1.3	70.600	68.859	1.291	Open Manhole	1350
S7.000	86.165	451.1	SWMH-1.3	70.600	68.858	1.292	Open Manhole	1350
S6.002	17.094	450.0	SWMH-1.4	70.600	68.820	1.330	Open Manhole	1350
S8.000	88.659	450.0	SWMH-1.4				Open Manhole	1350
			©19	82-2017	7 XP So	lutions		

Clifton Scannell Emerson Associates								
Seefort Lodge Castledawson	Enginenode Clonee							
Blackrock	Surface Watre Network 1	La l						
County Dublin		Micro						
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainade						
File GIS COMPOUND.MDX	Checked by Conor Doherty	Dialitada						
Micro Drainage	Network 2017.1.2							

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S6.003	0	450	SWMH-1.4	70.600	68.820	1.330	Open Manhole	1350
S3.004	0	600	SWMH-20.5	70.645	68.650	1.395	Open Manhole	1500
S9.000	0	375	SWMH-4.1	70.316	69.159	0.782	Open Manhole	1350
S9.001	0	375	SWMH-4.2	70.316	69.057	0.884	Open Manhole	1350
S9.002	0	375	SWMH-4.3	70.247	68.953	0.919	Open Manhole	1350
S10.000	0	375	SWMH-5.1	70.420	68.947	1.098	Open Manhole	1350
S9.003	0	375	SWMH-4.4	70.450	68.845	1.230	Open Manhole	1350
S9.004	0	375	SWMH-4.5	70.552	68.813	1.364	Open Manhole	1350
S3.005	0	600	SWMH-20.6	70.645	68.504	1.541	Open Manhole	1500
S3.006	0	600	SWMH-20.7	70.645	68.428	1.617	Open Manhole	1500
S3.007	0	600	SWMH-20.8	70.806	68.408	1.799	Open Manhole	1500
S11.000	0	450	SWMH-10.1	70.778	69.267	1.061	Open Manhole	1350
S11.001	0	450	SWMH-10.2	71.138	69.096	1.592	Open Manhole	1350
S11.002	0	450	SWMH-10.3	70.725	69.058	1.217	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)				
S6.003	8.806	450.0	SWMH-20.5	70.645	68.800	1.395	Open Manhole	1500				
S3.004	87.772	600.0	SWMH-20.6	70.645	68.504	1.541	Open Manhole	1500				
S9.000	38.102	373.5	SWMH-4.2	70.316	69.057	0.884	Open Manhole	1350				
S9.001	38.959	375.0	SWMH-4.3	70.247	68.953	0.919	Open Manhole	1350				
S9.002	40.673	375.0	SWMH-4.4	70.450	68.845	1.230	Open Manhole	1350				
S10.000	38.187	374.4	SWMH-4.4	70.450	68.845	1.230	Open Manhole	1350				
S9.003	11.969	375.0	SWMH-4.5	70.552	68.813	1.364	Open Manhole	1350				
S9.004	10.878	375.0	SWMH-20.6	70.645	68.784	1.486	Open Manhole	1500				
S3.005	38.209	500.0	SWMH-20.7	70.645	68.428	1.617	Open Manhole	1500				
S3.006	9.872	500.0	SWMH-20.8	70.806	68.408	1.799	Open Manhole	1500				
S3.007	16.960	500.0	SWMH-OUTFALL	70.000	68.374	1.026	Open Manhole	1800				
S11.000	76.899	450.0	SWMH-10.2	71.138	69.096	1.592	Open Manhole	1350				
S11.001	17.089	450.0	SWMH-10.3	70.725	69.058	1.217	Open Manhole	1350				
S11.002	44.455	450.0	SWMH-10.4	70.600	68.959	1.191	Open Manhole	1350				
		©1982-2017 XP Solutions										

Clifton Scannell Emerson Associa	Page 12	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.003	0	450	SWMH-10.4	70.600	68.959	1.191	Open Manhole	1350
S11.004	0	525	SWMH-10.5	70.550	68.774	1.251	Open Manhole	1500
S11.005	0	525	SWMH-10.6	70.525	68.652	1.348	Open Manhole	1500
S12.000	0	375	SWMH-11.1	70.630	68.925	1.330	Open Manhole	1350
S11.006	0	525	SWMH-10.7	70.200	68.528	1.147	Open Manhole	1500
S11.007	0	525	SWMH-10.8	70.692	68.450		Open Manhole	1500
s13.000	0	300	SWMH-30.1	71.234	69.585	1.349	Open Manhole	1200
S13.001	0	375	SWMH-30.2	71.156	69.288	1.493	Open Manhole	1350
S13.002	0	375	SWMH-30.3	71.151	69.109	1.667	Open Manhole	1350
S14.000	0	375	SWMH-31.1	71.000	69.800	0.825	Open Manhole	1350
S14.001	0	375	SWMH-31.2	71.003	69.663	0.965	Open Manhole	1350
S13.003	0	375	SWMH-30.4	71.026	69.075	1.576	Open Manhole	1350
S15.000	0	450	SWMH-32.1	70.939	69.322	1.167	Open Manhole	1350
S15.001	0	450	SWMH-32.2	70.950	69.182		Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.003	49.696	450.0	SWMH-10.5	70.550	68.849	1.251	Open Manhole	1500
S11.004	66.906	450.0	SWMH-10.6	70.525	68.625	1.375	Open Manhole	1500
S11.005	62.002	500.0	SWMH-10.7	70.200	68.528	1.147	Open Manhole	1500
S12.000	41.629	375.0	SWMH-10.7	70.200	68.814	1.011	Open Manhole	1500
S11.006	14.829	529.6	SWMH-10.8	70.692	68.500	1.667	Open Manhole	1500
S11.007	128.614	1286.1	SWMH-OUTFALL	70.000	68.350	1.125	Open Manhole	1800
s13.000	66.564	299.8	SWMH-30.2	71.156	69.363	1.493	Open Manhole	1350
S13.001	62.672	350.1	SWMH-30.3	71.151	69.109	1.667	Open Manhole	1350
S13.002	12.828	377.3	SWMH-30.4	71.026	69.075	1.576	Open Manhole	1350
S14.000	51.225	373.9	SWMH-31.2	71.003	69.663	0.965	Open Manhole	1350
S14.001	11.430	375.0	SWMH-30.4	71.026	69.633	1.018	Open Manhole	1350
s13.003	76.069	400.4	SWMH-30.5	71.091	68.885	1.831	Open Manhole	1500
S15.000	63.020	450.0	SWMH-32.2	70.950	69.182	1.318	Open Manhole	1350
S15.001	79.775	712.8	SWMH-30.5	71.091	69.070	1.571	Open Manhole	1500
			©1982	-2017 X	P Solut	cions		

Clifton Scannell Emerson Associa	tes	Page 13
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S13.004	0	600	SWMH-30.5	71.091	68.660	1.831	Open Manhole	1500
S13.005	0	600	SWMH-30.6	70.443	68.520	1.323	Open Manhole	1500
S13.006	0	600	SWMH-30.7	70.200	68.450	1.150	Open Manhole	1500
S16.000	0	300	SWMH-40.1	71.060	69.684	1.076	Open Manhole	1200
S16.001	0	375	SWMH-40.2	71.035	69.527	1.133	Open Manhole	1350
S16.002	0	450	SWMH-40.3	70.750	69.261	1.039	Open Manhole	1350
S16.003	0	450	SWMH-40.4	71.175	69.119	1.606	Open Manhole	1350
S17.000	0	300	SWMH-44.1	70.593	69.400	0.893	Open Manhole	1200
S17.001	0	300	SWMH-44.2	70.931	69.292	1.339	Open Manhole	1200
S16.004	0	450	SWMH-40.5	71.270	69.098	1.722	Open Manhole	1350
S18.000	0	525	SWMH-41.1	70.890	69.295	1.070	Open Manhole	1500
S18.001	0	525	SWMH-41.2	70.831	69.128	1.178	Open Manhole	1500
S16.005	0	525	SWMH-40.6	70.940	68.953	1.462	Open Manhole	1500
S19.000	0	375	SWMH-42.1	70.950	69.380	1.195	Open Manhole	1350
S19.001	0	375	SWMH-42.2	70.950	69.180	1.395	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
S13.004	67.190	479.9	SWMH-30.6	70.443	68.520	1.323	Open Manhole	1500
S13.005	8.730	436.5	SWMH-30.7	70.200	68.500	1.100	Open Manhole	1500
S13.006	70.784	707.8	SWMH-OUTFALL	70.000	68.350	1.050	Open Manhole	1800
S16.000			SWMH-40.2	71.035	69.602		Open Manhole	
S16.001			SWMH-40.3		69.336		Open Manhole	
S16.002	64.030	450.9	SWMH-40.4	71.175	69.119	1.606	Open Manhole	1350
S16.003	9.527	453.7	SWMH-40.5	71.270	69.098	1.722	Open Manhole	1350
S17.000	32.276	298.9	SWMH-44.2	70.931	69.292	1.339	Open Manhole	1200
S17.001	10.407	297.3	SWMH-40.5	71.270	69.257	1.713	Open Manhole	1350
S16.004	31.398	448.5	SWMH-40.6	70.940	69.028	1.462	Open Manhole	1500
S18.000	83.500	500.0	SWMH-41.2	70.831	69.128	1.178	Open Manhole	1500
S18.001	83.500	500.0	SWMH-40.6	70.940	68.961	1.454	Open Manhole	1500
S16.005	73.956	600.0	SWMH-40.7	70.800	68.830	1.445	Open Manhole	1500
S19.000	74.921	374.6	SWMH-42.2	70.950	69.180	1.395	Open Manhole	1350
S19.001	74.921	374.6	SWMH-40.7	70.800	68.980		Open Manhole	
			©1983	2-2017	XP Solu	tions		

Clifton Scannell Emerson Associa	tes	Page 14
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u> </u>
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S16.006	0	600	SWMH-40.7	70.800	68.755	1.445	Open Manhole	1500
S20.000	0	375	SWMH-43.1	70.595	69.470		Open Manhole	1350
S20.001 S20.002	0 0		SWMH-43.2 SWMH-43.3	70.440 70.370	69.312 69.129		Open Manhole Open Manhole	1350 1350
S16.007	0	750	SWMH-40.8	70.840	68.580	1.510	Open Manhole	1800
S16.008	0	750	SWMH-40.9	70.340	68.521	1.069	Open Manhole	1800
S16.009	0	750	SWMH-40.10	70.200	68.450	1.000	Open Manhole	1800
S3.008	0	750	SWMH-OUTFALL	70.000	68.350	0.900	Open Manhole	1800

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S16.006	14.850	594.0	SWMH-40.8	70.840	68.730	1.510	Open Manhole	1800
S20.000 S20.001 S20.002	64.122	350.0 350.4 350.0	SWMH-43.2 SWMH-43.3 SWMH-40.8	70.440 70.370 70.840	69.312 69.129 68.957	0.866	Open Manhole Open Manhole Open Manhole	1350 1350 1800
S16.007 S16.008 S16.009	8.824	756.2 420.2 484.2	SWMH-40.9 SWMH-40.10 SWMH-OUTFALL	70.340 70.200 70.000	68.521 68.500 68.350	0.950	Open Manhole Open Manhole Open Manhole	1800 1800 1800
S3.008	70.492	1409.8	SWMH-	69.957	68.300	0.907	Open Manhole	0

Clifton Scannell Emerson Associa	tes	Page 15
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Dialitaye
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
3.000	Classification	Gravel	75	0.187	0.140	0.140
	Classification	Roof	100	0.048	0.048	0.188
	Classification	Road	100	0.088	0.088	0.276
3.001	Classification	Road	100	0.051	0.051	0.051
4.000	Classification	Road	100	0.032	0.032	0.032
5.000	Classification	Gravel	75	0.123	0.092	0.092
	Classification	Grass	30	0.076	0.023	0.115
4.001	Classification	Road	100	0.018	0.018	0.018
	Classification	Road	100	0.027	0.027	0.045
4.002	Classification	Road	100	0.124	0.124	0.124
3.002	Classification	Road	100	0.083	0.083	0.083
3.003	Classification	Road	100	0.152	0.152	0.152
6.000	Classification	Road	100	0.020	0.020	0.020
	Classification	Grass	30	0.100	0.030	0.050
	Classification	Roof	100	0.038	0.038	0.088
	Classification	Road	100	0.142	0.142	0.230
6.001	Classification	Roof	100	0.042	0.042	0.042
	Classification		100	0.060	0.060	0.101
	Classification	Grass	30	0.013	0.004	0.105
7.000	Classification	Road	100	0.043	0.043	0.043
	Classification		100	0.004	0.004	0.047
	Classification		30	0.018	0.005	0.052
	Classification	Roof	100	0.037	0.037	0.089
	Classification	Road	100	0.055	0.055	0.144
6.002	Classification	Road	100	0.067	0.067	0.067
	Classification		100	0.043	0.043	0.110
	Classification	Road	100	0.010	0.010	0.120
8.000	Classification		30	0.037	0.011	0.011
	Classification	Road	100	0.008	0.008	0.019
	Classification	Road	100	0.082	0.082	0.102
	Classification		75	0.072	0.054	0.156
c	Classification	Roof	100	0.072	0.072	0.227
6.003	Classification		75	0.022	0.017	0.017
	Classification	Road	100	0.026	0.026	0.043
	Classification	Roof	100	0.078	0.078	0.120
	Classification		75	0.076	0.057	0.177
2	Classification	Road	100	0.039	0.039	0.216
	Classification	Road	100	0.099	0.099	0.099
9.000	Classification	Grass	30	0.024	0.007	0.007
	Classification	Road	100	0.006	0.006	0.013
	Classification		75	0.012	0.009	0.022
	Classification	Road	100	0.034	0.034	0.056
	Classification	Roof	100	0.022	0.022	0.077
	Classification		75	0.047	0.035	0.112
0 001	Classification Classification	Gravel Grass	75	0.023	0.017	0.129
9.001	Classification	Grass Road	30	0.067	0.020	0.020
	Classification		100 75	0.011 0.031	0.011 0.023	0.032
						0.055
	Classification Classification		100 75	0.035 0.014	0.035 0.010	0.090 0.100
	Classification	Gravel Roof	100	0.014	0.010	0.100

Clifton Scannell Emerson Associa	tes	Page 16
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	·

Area Summary for Storm

Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
9.002	Classification	Gravel	75	0.013	0.010	0.010
	Classification	Road	100	0.011	0.011	0.021
	Classification	Gravel	75	0.013	0.010	0.031
	Classification	Roof	100	0.004	0.004	0.035
	Classification	Grass	30	0.041	0.012	0.047
10.000	Classification	Road	100	0.036	0.036	0.036
	Classification	Roof	100	0.043	0.043	0.079
	Classification	Gravel	75	0.031	0.023	0.103
	Classification	Road	100	0.024	0.024	0.127
	Classification		75	0.019	0.015	0.141
9 003	Classification	Roof	100	0.035	0.035	0.035
5.005	Classification		75	0.033	0.024	0.059
	Classification	Road	100	0.033	0.024	0.077
	Classification		75			
	Classification			0.023	0.017	0.094
		Road	100	0.006	0.006	0.100
	Classification		30	0.032	0.010	0.110
	Classification		75	0.019	0.014	0.124
	Classification	Road	100	0.036	0.036	0.160
9.004	Classification		100	0.022	0.022	0.022
	Classification		75	0.007	0.006	0.028
	Classification	Grass	30	0.023	0.007	0.034
3.005	Classification	Road	100	0.065	0.065	0.065
3.006	-	-	100	0.000	0.000	0.000
3.007	-	-	100	0.000	0.000	0.000
11.000	Classification	Grass	30	0.273	0.082	0.082
	Classification	Road	100	0.127	0.127	0.209
	Classification	Gravel	75	0.078	0.058	0.267
	Classification	Roof	100	0.254	0.254	0.521
11.001	Classification	Grass	30	0.127	0.038	0.038
	Classification	Gravel	75	0.041	0.031	0.069
11.002	Classification		75	0.045	0.034	0.034
	Classification		100	0.084	0.084	0.119
	Classification		30	0.073	0.022	0.141
	Classification	Roof	100	0.069	0.069	0.210
11.003	Classification	Road	100	0.100	0.009	0.100
±±•000	Classification		100	0.100	0.100	0.100
11 004	Classification	Road	100	0.072	0.072	0.172
±±.004	Classification		75	0.122		
11 005					0.034	0.156
11.005	Classification		75	0.121	0.091	0.091
10 000	Classification	Road	100	0.052	0.052	0.143
12.000	Classification	Road	100	0.063	0.063	0.063
	Classification	Gravel	75	0.132	0.099	0.162
11.006	-	-	100	0.000	0.000	0.000
11.007	-	-	100	0.000	0.000	0.000
13.000	Classification	Grass	30	0.209	0.063	0.063
	Classification	Road	100	0.073	0.073	0.136
13.001	Classification	Grass	30	0.199	0.060	0.060
	Classification	Road	100	0.065	0.065	0.125
	Classification	Road	100	0.090	0.090	0.215
13.002	-	-	100	0.000	0.000	0.000
14.000	Classification	Grass	30	0.174	0.052	0.052

Clifton Scannell Emerson Associa	tes	Page 17
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	Y.
County Dublin		Micco
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Digiliga
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
	Classification	Road	100	0.066	0.066	0.119
	Classification	Gravel	75	0.083	0.062	0.181
	Classification	Roof	100	0.198	0.198	0.379
14.001	-	-	100	0.000	0.000	0.000
13.003	Classification	Gravel	75	0.096	0.072	0.072
	Classification	Road	100	0.099	0.099	0.171
15.000	Classification	Roof	100	0.266	0.266	0.266
15.001	-	_	100	0.000	0.000	0.000
	Classification	Road	100	0.211	0.211	0.211
	Classification	Roof	100	0.208	0.208	0.420
13.005	-	-	100	0.000	0.000	0.000
13.005	-	_	100	0.000	0.000	0.000
	Classification	- Road	100	0.000	0.000	0.000
10.000	Classification		30	0.030	0.038	0.038
16 001	Classification	Road				
10.001				0.040	0.040	0.040
	Classification		30	0.179	0.054	0.094
	Classification		75	0.173	0.130	0.224
10.002	Classification		30	0.268	0.080	0.080
	Classification			0.047	0.047	0.128
	Classification	Gravel	75	0.192	0.144	0.272
L6.003	-	-	100	0.000	0.000	0.000
7.000	Classification	Grass	30	0.207	0.062	0.062
	Classification	Road		0.041	0.041	0.104
.7.001	-	-	100	0.000	0.000	0.000
6.004	Classification	Road		0.034	0.034	0.034
	Classification	Gravel	75	0.071	0.053	0.087
8.000	Classification	Gravel	75	0.166	0.124	0.124
	Classification	Road	100	0.069	0.069	0.193
	Classification	Gravel	75	0.114	0.085	0.278
	Classification	Roof	100	0.240	0.240	0.519
8.001	Classification	Gravel	75	0.098	0.074	0.074
	Classification	Road	100	0.065	0.065	0.139
	Classification	Roof	100	0.219	0.219	0.358
6.005	Classification	Road	100	0.090	0.090	0.090
	Classification	Gravel	75	0.172	0.129	0.220
9.000	Classification	Roof	100	0.208	0.208	0.208
	Classification	Roof	100	0.217	0.217	0.217
	Classification	Road		0.038	0.038	0.038
	Classification		75	0.028	0.021	0.059
20.000	Classification		75	0.148	0.111	0.000
	Classification	Road	100	0.055	0.055	0.167
0 001	Classification		75	0.033	0.033	0.107
0.001	Classification	Road	100	0.105	0.125	0.123
	CIASSILLCALLON				0.005	
0.002		– Decel	100	0.000		0.000
	Classification	Road	100	0.116	0.116	0.116
16.008	-	-	100	0.000	0.000	0.000
16.009	-	-	100	0.000	0.000	0.000
3.008	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				10.733	8.524	8.524

Clifton Scannell Emerson Associa	Page 18	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

Network Classifications for Storm

PN	USMH Name	Pipe Dia	Min Cover Depth	Max Cover Depth	Ріре Туре	MH Dia	MH Width	MH Ring Depth	МН Туре
		(mm)	(m)	(m)		(mm)	(mm)	(m)	
S3.000	SWMH-20.1	300	1.265	1.427	Unclassified	1200	0	1.265	Unclassified
S3.001	SWMH-20.2	300	1.427	1.511	Unclassified	1200	0	1.427	Unclassified
	SWMH-21.1	300	1.397	1.633	Unclassified	1200	0		Unclassified
S5.000	SWMH-22.1	300	1.635	1.670	Unclassified	1200	0	1.670	Unclassified
S4.001	SWMH-21.2	300	1.302	1.635	Unclassified	1200	0	1.635	Unclassified
S4.002	SWMH-21.3	300	1.302	1.359	Unclassified	1200	0	1.302	Unclassified
S3.002	SWMH-20.3	450	1.511	1.567	Unclassified	1350	0	1.511	Unclassified
S3.003	SWMH-20.4	450	1.261	1.567	Unclassified	1350	0	1.567	Unclassified
S6.000	SWMH-1.1	450	0.993	1.224	Unclassified	1350	0	0.993	Unclassified
S6.001	SWMH-1.2	450	1.224	1.291	Unclassified	1350	0	1.224	Unclassified
S7.000	SWMH-2.1	450	1.061	1.292	Unclassified	1350	0	1.061	Unclassified
S6.002	SWMH-1.3	450	1.288	1.330	Unclassified	1350	0	1.292	Unclassified
S8.000	SWMH-3.1	450	0.921	1.330	Unclassified	1350	0	1.093	Unclassified
S6.003	SWMH-1.4	450	1.330	1.395	Unclassified	1350	0	1.330	Unclassified
S3.004	SWMH-20.5	600	1.395	1.541	Unclassified	1500	0	1.395	Unclassified
S9.000	SWMH-4.1	375	0.782	0.884	Unclassified	1350	0	0.782	Unclassified
S9.001	SWMH-4.2	375	0.508	0.919	Unclassified	1350	0	0.884	Unclassified
S9.002	SWMH-4.3	375	0.885	1.230	Unclassified	1350	0	0.919	Unclassified
S10.000	SWMH-5.1	375	0.992		Unclassified		0		Unclassified
S9.003	SWMH-4.4	375	1.141	1.364	Unclassified	1350	0		Unclassified
S9.004	SWMH-4.5	375	1.364		Unclassified		0		Unclassified
S3.005	SWMH-20.6	600	1.541		Unclassified		0		Unclassified
	SWMH-20.7	600	1.617		Unclassified		0		Unclassified
S3.007	SWMH-20.8	600	1.026		Unclassified		0		Unclassified
S11.000	SWMH-10.1	450	1.061		Unclassified		0		Unclassified
	SWMH-10.2	450	1.217		Unclassified		0		Unclassified
	SWMH-10.3	450	1.191		Unclassified		0		Unclassified
	SWMH-10.4	450	1.191		Unclassified		0		Unclassified
	SWMH-10.5	525	1.251		Unclassified		0		Unclassified
	SWMH-10.6	525	1.147		Unclassified		0		Unclassified
	SWMH-11.1	375	1.011		Unclassified		0		Unclassified
	SWMH-10.7	525	1.147		Unclassified		0		Unclassified
	SWMH-10.8	525	1.125		Unclassified		0		Unclassified
	SWMH-30.1	300 375	1.193		Unclassified		0		Unclassified
	SWMH-30.2 SWMH-30.3	375	1.400		Unclassified Unclassified		0		Unclassified Unclassified
	SWMH-30.3 SWMH-31.1	375			Unclassified		0		Unclassified
	SWMH-31.1 SWMH-31.2	375	0.825		Unclassified		0		Unclassified
	SWMH-31.2 SWMH-30.4	375	1.576		Unclassified		0		Unclassified
	SWMH-32.1 SWMH-32.2	450 450	1.167		Unclassified Unclassified		0		Unclassified Unclassified
	SWMH-32.2 SWMH-30.5		1.318		Unclassified		0		Unclassified
	SWMH-30.5 SWMH-30.6	600 600	1.323		Unclassified		0		Unclassified
	SWMH-30.0 SWMH-30.7	600	1.050		Unclassified		0		Unclassified
	SWMH-30.7	300	1.030		Unclassified		0		Unclassified
	SWMH-40.1 SWMH-40.2	375	0.944		Unclassified		0		Unclassified
	SWMH-40.3	450	0.888		Unclassified		0		Unclassified
	SWMH-40.4	450	0.000		Unclassified		0		Unclassified
	SWMH-44.1	300	0.893		Unclassified		0		Unclassified
		200		1.007			5		
			©1	982-2017	XP Solution	ıs			

Clifton Scannell Emerson Associa	Page 19	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	4
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

Network Classifications for Storm

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Ріре Туре	MH Dia (mm)	MH Width (mm)	MH Ring Depth (m)	МН Туре	
s17.001	SWMH-44.2	300	0.966	1.713	Unclassified	1200	0	1.339	Unclassified	
S16.004	SWMH-40.5	450	1.187	1.722	Unclassified	1350	0	1.722	Unclassified	
S18.000	SWMH-41.1	525	1.042	1.178	Unclassified	1500	0	1.070	Unclassified	
S18.001	SWMH-41.2	525	1.178	1.454	Unclassified	1500	0	1.178	Unclassified	
S16.005	SWMH-40.6	525	0.987	1.462	Unclassified	1500	0	1.462	Unclassified	
S19.000	SWMH-42.1	375	1.144	1.395	Unclassified	1350	0	1.195	Unclassified	
S19.001	SWMH-42.2	375	1.234	1.458	Unclassified	1350	0	1.395	Unclassified	
S16.006	SWMH-40.7	600	0.629	1.510	Unclassified	1500	0	1.445	Unclassified	
S20.000	SWMH-43.1	375	0.750	0.843	Unclassified	1350	0	0.750	Unclassified	
S20.001	SWMH-43.2	375	0.753	0.866	Unclassified	1350	0	0.753	Unclassified	
S20.002	SWMH-43.3	375	0.693	1.508	Unclassified	1350	0	0.866	Unclassified	
S16.007	SWMH-40.8	750	0.958	1.510	Unclassified	1800	0	1.510	Unclassified	
S16.008	SWMH-40.9	750	0.950	1.747	Unclassified	1800	0	1.069	Unclassified	
S16.009	SWMH-40.10	750	0.900	1.784	Unclassified	1800	0	1.000	Unclassified	
S3.008	SWMH-OUTFALL	750	0.746	0.907	Unclassified	1800	0	0.900	Unclassified	

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	Ι.	Level (m)	(mm)	(mm)
							(m)		

S3.008 SWMH- 69.957 68.300 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (1/per/day)Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000Output Interval (mins)1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Prof	ile Type	Summer
Return Period (years)		100		Cv	(Summer)	0.750
Region	Scotland and	Ireland		Cv	(Winter)	0.840
M5-60 (mm)		17.800	Storm	Duratio	on (mins)	30
Ratio R		0.323				

lifton Sc	annel	l Eme	rson	Assc	ociat	es							Page	e 20
eefort Lo	dge	Castl	edaws	on .	E	Engine	enode (Clon	ee					
lackrock					5	Surfa	ce Wat:	re N	etwo	rk 1			4	~
ounty Dub	lin												Mi	
ate 01/07	/2020	10:0	9		Ι	Design	ned by	Zvo	nimi	r Sal	lkic			C(O Dip 20
'ile GIS C	OMPOU	ND.MD	Х		0	Checke	ed by (Cono	r Dol	nert	Y		DIC	ainag
licro Drai	nage				1	letwo	rk 201	7.1.	2					
				<u>Onl:</u>	ine C	Contro	ols for	st.	<u>orm</u>					
ydro-Brak	<u>e® Opt</u>	timum	Manh	ole:	SWM	H-OUT	FALL,	DS/P	PN: S	3.00	8, Vol	ume	<u>∋ (m³</u>): 76
							nce MD-	SHE-C	0216-2	440-1				
					-	Head low (l					1.0 24			
				200	-	lush-F				Ca	alculat			
							ive Mi	nimis	se ups	trear				
						plicat Availa					Surfa	ce es		
					-	eter (1						es 16		
						Level					68.3			
			Dutlet ced Man	-							3 15	00 00		
			Co	ntro	l Poir	nts	Head	(m)	Flow	(1/s)			
		D	esign 1	Point			ed) 1			24.				
					Fl	ush-Fl	.o™ C	.359		24.	3			
					K	ick-Fl		733		21	0			
The hydrol		calcu		ns ha	ver He	ad Ran en bas	nge ed on ti		ead/Di		3 nge rel			
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m)	ke® Opt ke Opti ed	calcu cimum a mum® k	ulation as spec be util	ns ha cifie lised	ver He ve bee d. Sl then	ad Ran en bas hould these	nge ed on t another storag	- he He type e rou	ead/Di e of c iting	20. schar contro calcu	3 nge rela ol devi alation	ce (s w:	other ill be	than a
Hydro-Brak Hydro-Brak invalidate	ke® Opt ke Opti ed Flow	calcu cimum a mum® k	alation as spec be util Depth	ns ha cifie lised	ver He ve bee d. Sl then	ad Ran en bas hould these	nge ed on t another storag	- type e rou (m) F	ead/Di e of c uting 'low (20. schar contro calcu	3 rge rel. ol devi- ulation. Depth	ce (s w:	other ill be	than a
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200	ke® Opti ke Opti ed Flow	calcu timum a mum® k (1/s) 7.3 21.2	Depth	ns ha cifie .ised (m) .200 .400	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6	ed on ti another storag Depth 0 3.0 3.5	- type e rou (m) F 000	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5	3 cge rela ol devi- ulation Depth 7. 7.	ce (s w: (m) 000 500	other ill be	(1/s) 62.3 64.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300	ke® Opti ke Opti ed Flow	calcu timum a mum® k (1/s) 7.3 21.2 24.2	Depth 1. 1. 1.	ms ha cifie .ised (m) .200 .400 .600	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5	ed on ti another storag Depth 0 3.0 3.5 4.0	- type type rou (m) F 000 000	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5	3 cge rel. ol devi- ulation Depth 7. 7. 8.	ce (s w: (m) 000 500 000	other ill be	(1/s) 62.3 64.4 66.5
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400	<pre>ke® Opti ke Opti ed Flow)))</pre>	<pre>calcu imum a mum® k (1/s) 7.3 21.2 24.2 24.3</pre>	Depth	ms ha cifie lised (m) .200 .400 .600 .800	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3	ed on ti another storag Depth 0 3.0 3.5 4.0 4.5	- type type rou (m) F (00 (00 (00) (00)	ead/Di e of c uting	20. schar calcu 1/s) 41.3 44.5 47.5 50.3	3 cge rel. ol devi- ulation. Depth 7. 7. 8.	ce (s w: (m) 000 500 000 500	other ill be	(1/s) 62.3 64.4 66.5 68.5
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300	<pre>ke® Opti ke Opti ed Flow)))</pre>	calcu timum a mum® k (1/s) 7.3 21.2 24.2	Depth	ms ha cifie .ised (m) .200 .400 .600	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5	ed on ti another storag Depth 0 3.0 3.5 4.0	- type type rot (m) F 000 000 000 000	ead/Di e of c uting	20. schar contro calcu 1/s) 41.3 44.5 47.5	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000	other ill be	(1/s) 62.3 64.4 66.5
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2	Depth	(m) (m) (200 (400 (600 (800) (000) (200)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ver He ve bee d. Sl then	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He He type rou	ead/Di e of c uting 'low (20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce® Opti ce Opti ed Flow)))))</pre>	(1/s) (1/s) 7.3 21.2 24.2 24.3 23.9 23.2 21.9	Depth	(m) .200 .400 .600 .200 .400 .600	ver He ve bed d. Sl then Flow	ad Ran en bas hould these (1/s) 26.6 28.6 30.5 32.3 34.0 35.6 37.1 38.6	ed on ti another storag Depth 3.0 3.5 4.0 4.5 5.0 5.5 6.0	- He type c rou	ead/Di of c uting	20. schar contro calcu 1/s) 41.3 44.5 47.5 50.3 52.9 55.4 57.8	3 cge rel. ol devi- ulation. Depth 7. 7. 8. 8. 9.	ce (s w: (m) 000 500 000 500 000	other ill be	(1/s) 62.3 64.4 66.5 68.5 70.4

Clifton Scannell Emerson Associa	Page 21	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainade
File GIS COMPOUND.MDX	Checked by Conor Doherty	Dialitage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Tank or Pond Manhole: SWMH-OUTFALL, DS/PN: S3.008

Invert Level (m) 68.350

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 6242.0 1.000 7593.0 1.650 8502.0

Clifton Scannell Emerson Associa	Page 22	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	L.
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

Manhole Headloss for Storm

PN	US/MH Name	US/MH Headloss
S3.000	SWMH-20.1	0.500
S3.001	SWMH-20.2	0.500
S4.000	SWMH-21.1	0.500
S5.000	SWMH-22.1	0.500
S4.001	SWMH-21.2	0.500
S4.002	SWMH-21.3	0.500
S3.002	SWMH-20.3	0.500
S3.003	SWMH-20.4	0.500
S6.000	SWMH-1.1	0.500
S6.001	SWMH-1.2	0.500
S7.000	SWMH-2.1	0.500
S6.002	SWMH-1.3	0.500
S8.000	SWMH-3.1	0.500
S6.003	SWMH-1.4	0.500
S3.004	SWMH-20.5	0.500
S9.000	SWMH-4.1	0.500
S9.001	SWMH-4.2	0.500
S9.002	SWMH-4.3	0.500
S10.000	SWMH-5.1	0.500
S9.003	SWMH-4.4	0.500
S9.004	SWMH-4.5	0.500
S3.005	SWMH-20.6	0.500
S3.006	SWMH-20.7	0.500
s3.007	SWMH-20.8	0.500
S11.000	SWMH-10.1	0.500
S11.001 S11.002	SWMH-10.2	0.500 0.500
S11.002 S11.003	SWMH-10.3 SWMH-10.4	
S11.003 S11.004	SWMH-10.4 SWMH-10.5	0.500 0.500
S11.004 S11.005	SWMH-10.5	0.500
s12.000	SWMH-10.0	0.500
S12.000	SWMH-10.7	0.500
S11.000	SWMH-10.8	0.500
S13.000	SWMH-30.1	0.500
S13.001	SWMH-30.2	0.500
S13.002	SWMH-30.3	0.500
S14.000	SWMH-31.1	0.500
S14.001	SWMH-31.2	0.500
S13.003	SWMH-30.4	0.500
S15.000	SWMH-32.1	0.500
S15.001	SWMH-32.2	0.500
S13.004	SWMH-30.5	0.500
S13.005	SWMH-30.6	0.500
S13.006	SWMH-30.7	0.500
S16.000	SWMH-40.1	0.500
S16.001	SWMH-40.2	0.500
S16.002	SWMH-40.3	0.500
S16.003	SWMH-40.4	0.500
S17.000	SWMH-44.1	0.500
S17.001	SWMH-44.2	0.500
S16.004	SWMH-40.5	0.500
©1982-20	17 XP Sol	Lutions

Clifton Scannell Emerson Associa	Page 23	
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u>Y</u>
County Dublin		Micco
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye
Micro Drainage	Network 2017.1.2	

<u>Manhole Headloss for Storm</u>

PN	US/MH Name	US/MH Headloss
S18.000	SWMH-41.1	0.500
S18.001	SWMH-41.2	0.500
S16.005	SWMH-40.6	0.500
S19.000	SWMH-42.1	0.500
S19.001	SWMH-42.2	0.500
S16.006	SWMH-40.7	0.500
S20.000	SWMH-43.1	0.500
S20.001	SWMH-43.2	0.500
S20.002	SWMH-43.3	0.500
S16.007	SWMH-40.8	0.500
S16.008	SWMH-40.9	0.500
S16.009	SWMH-40.10	0.500
S3.008	SWMH-OUTFALL	0.500

Clifton	Scannell	Ellerson /	ASSOCIA	lles				Page 24
Seefort	Lodge Ca	stledaws	on	Engine	enode Clonee	2		
Blackroc	k			Surfac	ce Watre Net	work 1		L.
County D	ublin							Micco
Date 01/	07/2020 1	0:09		Desigr	ned by Zvoni	.mir Salk	ic	MICIO
File GIS	COMPOUND	.MDX		Checke	ed by Conor	Doherty		Drainago
Micro Dr	ainage			Networ	ck 2017.1.2			
5 year	Return Pe	riod Sumr	nary of	Critic	cal Results	by Maxim	um Level	l (Rank 1)
				<u>for S</u>	torm			
			Si	mulation	Criteria			
					Additional Fl			
	Hot	Start Leve	el (mm)	0	MADD Fact	Inlet Co	effiecien	t 0.800
	ole Headlos ul Sewage p				ow per Person	per Day (l/per/day) 0.000
					Number of Ct		1	
	Numl	per of Onl	ine Cont	rols 1 1	Number of Stor Number of Time	e/Area Diag	grams O	
	Numbe	er of Offl	ine Cont	rols 0 1	Number of Real	L Time Cont	crols 0	
		infall Mod		etic Rain	nfall Details	Ratio R 0.	303	
	Ka			land and	FSR Ireland Cv (
		M5-60 (m			17.800 Cv (
		6 71						
	margi	IN LOF FLOC		-	(mm) 300.0			
	Margi	IN LOT FLOC		sis Time	(mm) 300.0 step Fine In atus ON			
	Harg	IN LOT FLOC		sis Time	step Fine In			
	Margi			sis Time	step Fine In	ertia Stat		
	-	Prof	Analys ile(s)	sis Time DTS St	step Fine In	ertia Stat Summer a	us OFF and Winter	
	Du Return P	Prof ration(s) eriod(s) (Analys ile(s) (mins) 1 years)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winter 960, 1440 5, 30, 100)
	Du Return P	Prof ration(s)	Analys ile(s) (mins) 1 years)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winter 960, 1440)
	Du Return P	Prof ration(s) eriod(s) (Analys ile(s) (mins) 1 years)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winter 960, 1440 5, 30, 100)
DN	Du Return P Cl US/MH	Prof ration(s) eriod(s) (imate Chan	Analy: ile(s) (mins) 1 years) ge (%) Return	DTS St	step Fine In atus ON 60, 120, 240, First (X)	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
PN	Du Return P Cl	Prof ration(s) eriod(s) (Analy: ile(s) (mins) 1 years) ge (%) Return	SIS TIME DTS St	step Fine In atus ON 60, 120, 240, First (X)	ertia Stat Summer a 360, 480,	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10) Overflow
S3.000	Du Return P Cl US/MH Name SWMH-20.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5	DTS St DTS St L5, 30, 0 Climate Change +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
S3.000 S3.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5	Sis Time DTS St L5, 30, 0 Climate Change +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
S3.000 S3.001 S4.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5	<pre>sis Time DTS St L5, 30, 0 Climate Change +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240,</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
S3.000 S3.001 S4.000 S5.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5	<pre>sis Time DTS St L5, 30, 0 Climate Change +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
S3.000 S3.001 S4.000 S5.000 S4.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5	<pre>sis Time DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240,</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5	Climate Change +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St DTS 30, 0 Climate t10% +10</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 30/15 Summer 30/15 Summer</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-2.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 0 +10% +10% +10% +10% +10% +10% +10% +10	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 0 +10% +10% +10% +10% +10% +10% +10% +10	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-3.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 4 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-1.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-1.4 SWMH-20.5	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5	Climate DTS St L5, 30, 4 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-1.4 SWMH-20.5 SWMH-4.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120,</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.3 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-20.5 SWMH-4.1 SWMH-4.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001 \$9.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-2.1 SWMH-2.5 SWMH-4.1 SWMH-4.2 SWMH-4.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St DTS St DTS 30, 0 Climate Change +10% +10</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 120, 60, 120, 240, 60, 120, 000 60, 120, 000 60, 120, 240, 60, 120, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100,</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001 \$9.002 \$10.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-1.4 SWMH-20.5 SWMH-4.1 SWMH-4.2 SWMH-4.3 SWMH-5.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%)	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 00, 00, 00, 00, 00, 00, 00, 00, 00,</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001 \$9.002 \$10.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.2 SWMH-1.3 SWMH-1.4 SWMH-20.5 SWMH-4.1 SWMH-4.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 120, 60, 120, 240, 60, 120, 000 60, 120, 000 60, 120, 240, 60, 120, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100, 000 60, 100,</pre>	Summer a 360, 480, First (Y)	us OFF and Winter 960, 1440 5, 30, 100 .0, 10, 10 First (Z)) Overflow

Clifton Scannell Emerson Associates				
Seefort Lodge Castledawson	Enginenode Clonee			
Blackrock	Surface Watre Network 1	<u>Y</u>		
County Dublin		Micro		
Date 01/07/2020 10:09	Designed by Zvonimir Salkic			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage		
Micro Drainage	Network 2017.1.2			

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)			Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
S3.000	SWMH-20.1	69.682	-0.063	0.000	0.92		55.5	OK	
	SWMH-20.2		-0.013	0.000	1.00		57.1	OK	
S4.000	SWMH-21.1	69.824	-0.176	0.000	0.12		6.4	OK	
S5.000	SWMH-22.1	69.885	-0.165	0.000	0.40		23.8	OK	
S4.001	SWMH-21.2	69.818	-0.114	0.000	0.62		35.8	OK	
S4.002	SWMH-21.3	69.766	-0.075	0.000	0.89		54.1	OK	
S3.002	SWMH-20.3	69.431	-0.058	0.000	0.95		120.9	OK	
S3.003	SWMH-20.4	69.383	-0.050	0.000	0.93		132.7	OK	
S6.000	SWMH-1.1	69.334	-0.233	0.000	0.25		35.9	OK	
S6.001	SWMH-1.2	69.321	-0.055	0.000	0.29		37.2	OK	
S7.000	SWMH-2.1	69.314	-0.185	0.000	0.15		21.8	OK	
S6.002	SWMH-1.3	69.306	-0.002	0.000	0.61		63.4	OK	
S8.000	SWMH-3.1	69.297	-0.170	0.000	0.24		34.8	OK	
S6.003	SWMH-1.4	69.284	0.014	0.000	1.31		111.7	SURCHARGED	
S3.004	SWMH-20.5	69.260	0.010	0.000	0.85		218.9	SURCHARGED	
S9.000	SWMH-4.1	69.321	-0.213	0.000	0.28		26.1	OK	
S9.001	SWMH-4.2	69.294	-0.138	0.000	0.44		41.4	OK	
S9.002	SWMH-4.3	69.263	-0.065	0.000	0.47		44.1	OK	
S10.000	SWMH-5.1	69.246	-0.076	0.000	0.28		26.3	OK	
S9.003	SWMH-4.4	69.228	0.008	0.000	1.23		86.4	SURCHARGED	
S9.004	SWMH-4.5	69.188	0.000	0.000	1.13		78.0	OK	

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micro			
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainarre			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye			
Micro Drainage	Network 2017.1.2				

	US/MH			Climate	First		First		First (Z)
PN	Name	Storm	Period	Change	Surcha	arge	Floc	d	Overflow
S3.005	SWMH-20.6	30 Winter	5	+10%	5/15 \$	Summer			
S3.006	SWMH-20.7	30 Winter	5	+10%		Summer			
\$3.007	SWMH-20.8	15 Summer	5	+10%	30/15				
S11.000	SWMH-10.1	15 Winter		+10%	30/15 \$				
S11.001	SWMH-10.2	15 Winter		+10%	30/15 \$				
S11.002	SWMH-10.3	15 Winter		+10%	30/15 \$				
S11.003	SWMH-10.4	15 Winter	5	+10%	30/15 \$				
S11.004	SWMH-10.5	30 Winter	5	+10%	30/15 \$	Summer			
S11.005	SWMH-10.6	30 Winter	5	+10%	30/15 \$	Summer			
S12.000	SWMH-11.1	15 Winter	5	+10%	100/15 \$	Summer			
S11.006	SWMH-10.7	15 Summer	5	+10%	30/15 \$	Summer			
S11.007	SWMH-10.8	30 Winter	5	+10%	5/30 1	Winter			
S13.000	SWMH-30.1	15 Winter	5	+10%	30/15 \$	Summer			
S13.001	SWMH-30.2	15 Winter	5	+10%	5/15 1	Winter			
\$13.002	SWMH-30.3	15 Winter	5	+10%	5/15 \$	Summer			
S14.000	SWMH-31.1	15 Winter	5	+10%	30/15 \$	Summer			
S14.001	SWMH-31.2	15 Winter	5	+10%	30/15 \$	Summer			
S13.003	SWMH-30.4	15 Winter	5	+10%	5/15 \$	Summer			
s15.000	SWMH-32.1	15 Winter	5	+10%					
S15.001	SWMH-32.2	15 Winter	5	+10%					
S13.004	SWMH-30.5	15 Winter	5	+10%	30/15 0	Winter			
S13.005	SWMH-30.6	15 Winter	5	+10%	30/15 1	Winter	100/1440	Winter	
S13.006	SWMH-30.7	15 Winter	5	+10%	30/15 \$	Summer	100/1440	Summer	
S16.000	SWMH-40.1	15 Winter	5	+10%	30/15 1	Winter			
S16.001	SWMH-40.2	15 Winter	5	+10%	30/15 \$	Summer			
S16.002	SWMH-40.3	15 Winter	5	+10%	30/15 \$	Summer			
S16.003	SWMH-40.4	15 Winter	5	+10%	30/15 \$	Summer			
S17.000	SWMH-44.1	30 Winter		+10%	30/15 \$	Summer			
S17.001	SWMH-44.2	30 Winter		+10%	30/15 \$	Summer			
S16.004	SWMH-40.5	15 Winter	5	+10%	5/15 1	Winter			
S18.000	SWMH-41.1	30 Winter		+10%	30/15 \$	Summer			
S18.001	SWMH-41.2	15 Winter	5	+10%	30/15 \$				
S16.005	SWMH-40.6	15 Winter		+10%		Summer			
S19.000	SWMH-42.1	15 Winter			100/15 \$				
S19.001	SWMH-42.2	15 Winter	5	+10%	30/15 \$				
S16.006	SWMH-40.7	60 Winter		+10%	30/15 \$				
S20.000	SWMH-43.1	15 Winter	5		100/15 1				
S20.001	SWMH-43.2	15 Winter			100/15 \$				
S20.002	SWMH-43.3	15 Winter	5		100/15				
S16.007	SWMH-40.8	30 Winter	5	+10%	30/15 \$				
S16.008	SWMH-40.9				100/15 \$				
S16.009	SWMH-40.10				100/15 :	Summer			
\$3.008	SWMH-OUTFALL	1440 Winter	5	+10%					

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micro			
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Digiliada			
Micro Drainage	Network 2017.1.2	1			

PN	US/MH Name	Overflow Act.	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status
						-	(=/ =/		
S3.005	SWMH-20.6		69.149	0.045	0.000	1.12			SURCHARGED
S3.006	SWMH-20.7		69.053	0.025	0.000	1.92			SURCHARGED
S3.007	SWMH-20.8		69.008	0.000	0.000	1.39		254.0	OK
S11.000	SWMH-10.1		69.569	-0.148	0.000	0.70		100.0	OK
S11.001	SWMH-10.2		69.478	-0.068	0.000	0.94		97.7	OK
S11.002	SWMH-10.3		69.438	-0.071	0.000	0.91		123.8	OK
S11.003	SWMH-10.4		69.370	-0.039	0.000	1.00		136.9	OK
S11.004	SWMH-10.5		69.197	-0.101	0.000	0.68		141.0	OK
S11.005	SWMH-10.6		69.128	-0.049	0.000	0.76		148.4	OK
S12.000	SWMH-11.1		69.083	-0.217	0.000	0.37		34.4	OK
S11.006	SWMH-10.7		69.053	0.000	0.000	1.02		117.1	OK
S11.007	SWMH-10.8		69.003	0.028	0.000	1.01			SURCHARGED
S13.000	SWMH-30.1		69.731	-0.154	0.000	0.44		26.7	OK
S13.001	SWMH-30.2		69.693	0.030	0.000	0.50			SURCHARGED
S13.002	SWMH-30.3		69.650	0.166	0.000	0.85			SURCHARGED
S14.000	SWMH-31.1		70.066	-0.109	0.000	0.80		76.2	OK
S14.001	SWMH-31.2		69.985	-0.053	0.000	1.00		69.7	OK
S13.003	SWMH-30.4		69.629	0.179	0.000	1.35			SURCHARGED
S15.000	SWMH-32.1		69.521	-0.251	0.000	0.38		52.7	OK
S15.001	SWMH-32.2		69.393	-0.239	0.000	0.43		49.0	OK
S13.004	SWMH-30.5		69.151	-0.109	0.000	0.73		206.7	OK
S13.005	SWMH-30.6		69.089	-0.031	0.000	1.19		195.1	OK
S13.006	SWMH-30.7		68.871	-0.179	0.000	0.84		195.0	OK
S16.000	SWMH-40.1		69.777	-0.207	0.000	0.19		10.0	OK
S16.001	SWMH-40.2		69.719	-0.183	0.000	0.48		46.9	OK
S16.002	SWMH-40.3		69.608	-0.103	0.000	0.58		80.7	OK
S16.003	SWMH-40.4		69.569	0.000	0.000	0.79		66.8	OK
S17.000	SWMH-44.1		69.570	-0.130	0.000	0.29		17.2	OK
S17.001	SWMH-44.2		69.557	-0.035	0.000	0.30		15.2	OK
S16.004	SWMH-40.5		69.551	0.003	0.000	0.62		81.9	SURCHARGED
S18.000	SWMH-41.1		69.589	-0.231	0.000	0.41		81.5	OK
S18.001	SWMH-41.2		69.561	-0.092	0.000	0.61		122.3	OK
S16.005	SWMH-40.6		69.515	0.037	0.000	1.10		199.1	SURCHARGED
S19.000	SWMH-42.1		69.558	-0.197	0.000	0.41		40.2	OK
S19.001	SWMH-42.2		69.432	-0.123	0.000	0.71		69.2	OK
S16.006	SWMH-40.7		69.355	0.000	0.000	1.48		207.7	OK
S20.000	SWMH-43.1		69.625	-0.220	0.000	0.34		33.6	OK
S20.001	SWMH-43.2		69.533	-0.154	0.000	0.62		61.8	OK
S20.002	SWMH-43.3		69.342	-0.162	0.000	0.60		59.4	OK
S16.007	SWMH-40.8		69.198	-0.132	0.000	0.83		308.1	OK
S16.008	SWMH-40.9		69.094	-0.177	0.000	1.10		307.5	OK
S16.009	SWMH-40.10		68.893	-0.307	0.000	0.65		307.7	OK
S3.008	SWMH-OUTFALL		68.752	-0.348	0.000	0.07		24.2	OK

Clifton Scannell Emerson Associa	tes	Page 28
Seefort Lodge Castledawson	Enginenode Clonee	
Blackrock	Surface Watre Network 1	<u>Y</u>
County Dublin		Micro
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage
Micro Drainage	Network 2017.1.2	

PN	US/MH Name	Level Exceeded
S3.005	SWMH-20.6	
S3.006	SWMH-20.7	
S3.007	SWMH-20.8	
S11.000	SWMH-10.1	
S11.001	SWMH-10.2	
S11.002 S11.003	SWMH-10.3 SWMH-10.4	
s11.003	SWMH-10.4 SWMH-10.5	
S11.004 S11.005	SWMH-10.5	
s12.000	SWMH-11.1	
S12.000	SWMH-10.7	
S11.000	SWMH-10.8	
s13.000	SWMH-30.1	
s13.000	SWMH-30.2	
s13.001	SWMH-30.3	
S13.002	SWMH-31.1	
S14.001	SWMH-31.2	
s13.003	SWMH-30.4	
s15.000	SWMH-32.1	
s15.001	SWMH-32.2	
s13.004	SWMH-30.5	
S13.005	SWMH-30.6	
S13.006	SWMH-30.7	
S16.000	SWMH-40.1	
S16.001	SWMH-40.2	
S16.002	SWMH-40.3	
S16.003	SWMH-40.4	
S17.000	SWMH-44.1	
S17.001	SWMH-44.2	
S16.004	SWMH-40.5	
S18.000	SWMH-41.1	
S18.001	SWMH-41.2	
S16.005	SWMH-40.6	
S19.000	SWMH-42.1	
S19.001	SWMH-42.2	
S16.006	SWMH-40.7	
S20.000	SWMH-43.1	
S20.001	SWMH-43.2	
S20.002	SWMH-43.3	
S16.007	SWMH-40.8	
S16.008	SWMH-40.9	
S16.009	SWMH-40.10	
S3.008	SWMH-OUTFALL	

Clifton	Scannell		1000010	ices				Page 29
Seefort	Lodge Ca	stledaws	on	Engine	enode Clonee	9		
Blackroc	k			Surfac	ce Watre Net	work 1		Y.
County D	ublin							Micco
Date 01/	07/2020 1	0:09		Desigr	ned by Zvoni	lmir Salk	ic	MICro
File GIS	COMPOUND	.MDX		Checke	ed by Conor	Doherty		Drainago
Micro Dr	ainage			Networ	rk 2017.1.2			
<u>30 year</u>	Return Pe	eriod Sum	mary o:	f Criti	cal Results	by Maxi	mum Leve	el (Rank 1
				<u>for S</u>	torm			
			Si	mulation	Criteria			
			Factor	1.000	Additional Fl			
					MADD Fact			
Manh		Start Leve s Coeff (G	. ,		.ow per Person		effiecien 1/per/day	
	ul Sewage p				.e. per rerson	Por Day (-, Per, day	, 0.000
		_						
		-		-	Number of Stor	-		
					Number of Time Number of Real		-	
	IN GIRLON			0		0011		
				etic Rain	nfall Details			
	Ra	infall Mod		1		Ratio R 0.		
		Regi M5-60 (m		land and	Ireland Cv (17.800 Cv (
		110 00 (11			11.000 00 (Wincer, o.	010	
	M	C 71						
	Margi	n for Floo	d Risk V	Warning	(mm) 300.0	DVD Stat	us OFF	
	Margi	n for Floo		sis Time	step Fine In			
	Margi	n for Floc		sis Time				
	Margı	n for Floc		sis Time	step Fine In			
	-	Prof	Analys ile(s)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a	us OFF and Winte:	
	Du	Prof ration(s)	Analys ile(s) (mins) 1	sis Time DTS St	step Fine In	ertia Stat Summer a 360, 480,	us OFF and Winte: 960, 144	0
	Du Return P	Prof ration(s) eriod(s) (Analys ile(s) (mins) 1 years)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winte: 960, 144 5, 30, 10	0 0
	Du Return P	Prof ration(s)	Analys ile(s) (mins) 1 years)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winte: 960, 144	0 0
	Du Return P	Prof ration(s) eriod(s) (Analys ile(s) (mins) 1 years)	sis Time DTS St	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winte: 960, 144 5, 30, 10	0 0
DN	Du Return P Cl US/MH	Prof ration(s) eriod(s) (imate Chan	Analy: ile(s) (mins) 1 years) ge (%) Return	DTS St	step Fine In atus ON 60, 120, 240, First (X)	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
PN	Du Return P Cl	Prof ration(s) eriod(s) (Analy: ile(s) (mins) 1 years) ge (%) Return	SIS TIME DTS St	step Fine In atus ON 60, 120, 240,	ertia Stat Summer a 360, 480,	us OFF and Winte: 960, 144 5, 30, 10 10, 10, 10	0 0 ;) Overflow
	Du Return P Cl US/MH	Prof ration(s) eriod(s) (imate Chan Storm	Analy: ile(s) (mins) 1 years) ge (%) Return	DTS St DTS St L5, 30, 0 Climate Change	step Fine In atus ON 60, 120, 240, First (X)	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
s3.000 s3.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30	Sis Time DTS St L5, 30, 0 Climate Change +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
S3.000 S3.001 S4.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30	<pre>sis Time DTS St L5, 30, 0 Climate Change +10% +10% +10%</pre>	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
S3.000 S3.001 S4.000 S5.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30	<pre>sis Time DTS St L5, 30, 0 Climate Change +10% +10% +10% +10%</pre>	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
S3.000 S3.001 S4.000 S5.000 S4.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-22.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30	Climate Change +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 100, 100, 100, 100, 100, 10</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate Change +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-22.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30	Climate Change +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 100, 100, 100, 100, 100, 10</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	<pre>sis Time DTS St DTS St L5, 30, 0 Climate t10% +10</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 100, 100, 100, 100, 100, 100, 10</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.2 SWMH-2.1 SWMH-2.1 SWMH-3.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-1.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.2 SWMH-1.3 SWMH-3.1 SWMH-3.1 SWMH-20.5	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	Climate DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.2 SWMH-2.1 SWMH-2.1 SWMH-3.1 SWMH-3.1 SWMH-3.1 SWMH-20.5 SWMH-4.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-2.1 SWMH-2.2 SWMH-2.1 SWMH-2.2 SWMH-2.1 SWMH-2.2 SW	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 60, 120, 120, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.5 SWMH-2.1 SWMH-3.1 SWMH-3.1 SWMH-3.1 SWMH-3.1 SWMH-4.2 SWMH-4.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.5 SWMH-2.1 SWMH-3.1 SWMH-3.1 SWMH-4.2 SWMH-4.3 SWMH-4.3 SWMH-5.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 000 60, 120, 000 60, 120, 240, 60, 120, 000 60, 100, 000</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001 \$9.002 \$10.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.4 SWMH-20.5 SWMH-2.1 SWMH-2.1 SWMH-2.1 SWMH-3.1 SWMH-3.1 SWMH-4.4 SWMH-4.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy: ile(s) (mins) 1 years) ge (%) Return Period 30 30 30 30 30 30 30 30 30 30	<pre>sis Time DTS St DTS St L5, 30, 0 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 00, 00, 00, 00, 00, 00, 00, 00, 00,</pre>	Summer a 360, 480,	us OFF 960, 144 5, 30, 10 10, 10, 10 First (Z	0 0 ;) Overflow

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micco			
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye			
Micro Drainage	Network 2017.1.2				

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
s3.000	SWMH-20.1		0.374	0.000	1.21			SURCHARGED	
S3.001	SWMH-20.2	70.031	0.458	0.000	1.41		80.6	SURCHARGED	
S4.000	SWMH-21.1	70.113	0.113	0.000	0.15		8.1	SURCHARGED	
S5.000	SWMH-22.1	70.132	0.082	0.000	0.55		32.3	SURCHARGED	
S4.001	SWMH-21.2	70.109	0.177	0.000	0.83		47.4	SURCHARGED	
S4.002	SWMH-21.3	70.073	0.232	0.000	1.19		72.3	SURCHARGED	
S3.002	SWMH-20.3	69.940	0.451	0.000	1.14		145.1	SURCHARGED	
S3.003	SWMH-20.4	69.877	0.444	0.000	1.11		158.6	SURCHARGED	
S6.000	SWMH-1.1	69.820	0.253	0.000	0.35		50.5	SURCHARGED	
S6.001	SWMH-1.2	69.795	0.419	0.000	0.41		53.4	SURCHARGED	
S7.000	SWMH-2.1	69.787	0.288	0.000	0.21		30.5	SURCHARGED	
S6.002	SWMH-1.3	69.771	0.463	0.000	0.90		93.2	SURCHARGED	
S8.000	SWMH-3.1	69.762	0.295	0.000	0.34		49.0	SURCHARGED	
S6.003	SWMH-1.4	69.736	0.466	0.000	1.93		164.5	SURCHARGED	
S3.004	SWMH-20.5	69.685	0.435	0.000	1.20		308.2	SURCHARGED	
S9.000	SWMH-4.1	69.635	0.101	0.000	0.30		28.4	SURCHARGED	
S9.001	SWMH-4.2	69.619	0.187	0.000	0.48		44.9	SURCHARGED	
S9.002	SWMH-4.3	69.588	0.260	0.000	0.55		51.0	SURCHARGED	
S10.000	SWMH-5.1	69.569	0.247	0.000	0.34		31.6	SURCHARGED	
S9.003	SWMH-4.4	69.552	0.332	0.000	1.60		112.8	SURCHARGED	
S9.004	SWMH-4.5	69.512	0.324	0.000	1.72		118.4	SURCHARGED	

Clifton Scannell Emerson Associates				
Seefort Lodge Castledawson	Enginenode Clonee			
Blackrock	Surface Watre Network 1	<u>Y</u>		
County Dublin		Micro		
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage		
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye		
Micro Drainage	Network 2017.1.2	1		

	US/MH	0 h		Climate	First (X)	First (Y)	First (Z)
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow
S3.005	SWMH-20.6	30 Winter	30	+10%	5/15 Summer	•	
S3.006	SWMH-20.7	30 Winter	30	+10%	5/15 Summer		
S3.007	SWMH-20.8	30 Winter	30	+10%	30/15 Summer		
S11.000	SWMH-10.1	15 Winter	30	+10%	30/15 Summer		
S11.001	SWMH-10.2	15 Winter	30	+10%	30/15 Summer		
S11.002	SWMH-10.3	15 Winter	30	+10%	30/15 Summer		
S11.003	SWMH-10.4	30 Winter	30	+10%	30/15 Summer		
S11.004	SWMH-10.5	30 Winter	30	+10%	30/15 Summer		
S11.005	SWMH-10.6	30 Winter	30	+10%	30/15 Summer		
S12.000	SWMH-11.1	30 Winter	30	+10%	100/15 Summer		
S11.006	SWMH-10.7	30 Winter	30	+10%	30/15 Summer		
S11.007	SWMH-10.8	30 Winter	30	+10%	5/30 Winter		
S13.000	SWMH-30.1	15 Winter	30	+10%	30/15 Summer		
S13.001	SWMH-30.2	15 Winter	30	+10%	5/15 Winter		
S13.002	SWMH-30.3	15 Winter	30	+10%	5/15 Summer		
S14.000	SWMH-31.1	15 Winter	30	+10%	30/15 Summer		
S14.001	SWMH-31.2	15 Winter	30	+10%	30/15 Summer		
S13.003	SWMH-30.4	15 Winter	30	+10%	5/15 Summer		
S15.000	SWMH-32.1	15 Winter	30	+10%			
S15.001	SWMH-32.2	15 Winter	30	+10%			
S13.004	SWMH-30.5	15 Winter	30	+10%	30/15 Winter		
S13.005	SWMH-30.6	15 Winter	30	+10%	30/15 Winter	100/1440 Winter	
S13.006	SWMH-30.7	15 Winter	30	+10%	30/15 Summer	100/1440 Summer	
S16.000	SWMH-40.1	15 Winter	30	+10%	30/15 Winter		
S16.001	SWMH-40.2	15 Winter	30	+10%	30/15 Summer		
S16.002	SWMH-40.3	15 Winter	30	+10%	30/15 Summer		
S16.003	SWMH-40.4	15 Winter	30	+10%	30/15 Summer		
S17.000	SWMH-44.1	15 Winter	30	+10%	30/15 Summer	•	
S17.001	SWMH-44.2	15 Winter	30	+10%	30/15 Summer	•	
S16.004	SWMH-40.5	15 Winter	30	+10%	5/15 Winter		
S18.000	SWMH-41.1	15 Winter	30	+10%	30/15 Summer		
S18.001	SWMH-41.2	15 Winter	30	+10%	30/15 Summer		
S16.005	SWMH-40.6	15 Winter	30	+10%	5/15 Summer		
S19.000	SWMH-42.1	15 Winter	30	+10%	100/15 Summer		
S19.001	SWMH-42.2	15 Winter	30	+10%	30/15 Summer		
S16.006	SWMH-40.7	15 Winter	30	+10%	30/15 Summer		
S20.000	SWMH-43.1	15 Winter	30		100/15 Winter		
S20.001	SWMH-43.2	15 Winter	30		100/15 Summer		
S20.002	SWMH-43.3	15 Winter	30		100/15 Summer		
S16.007	SWMH-40.8	15 Winter	30	+10%	30/15 Summer		
S16.008	SWMH-40.9	60 Summer	30		100/15 Summer		
S16.009	SWMH-40.10	15 Winter	30		100/15 Summer		
S3.008	SWMH-OUTFALL	1440 Winter	30	+10%			
l							
		<u></u> ه۱	002-20	17 VD 0	olutions		
		©1	202-20	TI VL S	OTUCTOUS		

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micro			
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye			
Micro Drainage	Network 2017.1.2				

PN	US/MH Name	Overflow Act.	Level (m)	Depth (m)	Volume (m³)	Flow / Cap.	Overflow (1/s)	Flow (l/s)	Status
s3.005	SWMH-20.6		69.469	0.365	0.000	1.58		408.1	SURCHARGED
S3.006	SWMH-20.7		69.277	0.249	0.000	2.71		408.6	SURCHARGED
S3.007	SWMH-20.8		69.110	0.102	0.000	2.23		408.4	SURCHARGED
S11.000	SWMH-10.1		69.942	0.225	0.000	0.94		133.1	SURCHARGED
S11.001	SWMH-10.2		69.820	0.274	0.000	1.41		145.8	SURCHARGED
S11.002	SWMH-10.3		69.766	0.258	0.000	1.31		178.1	SURCHARGED
S11.003	SWMH-10.4		69.646	0.237	0.000	1.32		181.9	SURCHARGED
S11.004	SWMH-10.5		69.488	0.189	0.000	0.95		196.9	SURCHARGED
S11.005	SWMH-10.6		69.362	0.185	0.000	1.06		208.2	SURCHARGED
S12.000	SWMH-11.1		69.243	-0.057	0.000	0.42		39.1	OK
S11.006	SWMH-10.7		69.228	0.175	0.000	1.96		226.2	SURCHARGED
S11.007	SWMH-10.8		69.166	0.191	0.000	1.47		212.2	SURCHARGED
S13.000	SWMH-30.1		70.318	0.433	0.000	0.51		31.0	SURCHARGED
S13.001	SWMH-30.2		70.261	0.598	0.000	0.73		72.4	SURCHARGED
S13.002	SWMH-30.3		70.166	0.682	0.000	1.02		72.3	SURCHARGED
S14.000	SWMH-31.1		70.293	0.118	0.000	1.13		107.8	SURCHARGED
S14.001	SWMH-31.2		70.178	0.140	0.000	1.40		97.3	SURCHARGED
S13.003	SWMH-30.4		70.132	0.682	0.000	1.99		187.7	SURCHARGED
S15.000	SWMH-32.1		69.574	-0.198	0.000	0.56		78.1	OK
S15.001	SWMH-32.2		69.449	-0.183	0.000	0.60		68.0	OK
S13.004	SWMH-30.5		69.287	0.027	0.000	1.04		292.9	SURCHARGED
S13.005	SWMH-30.6		69.133	0.013	0.000	1.79		293.1	SURCHARGED
S13.006	SWMH-30.7		69.078	0.028	0.000	1.25		292.0	SURCHARGED
S16.000	SWMH-40.1		70.095	0.111	0.000	0.27		14.1	SURCHARGED
S16.001	SWMH-40.2		70.084	0.182	0.000	0.75		72.5	SURCHARGED
S16.002	SWMH-40.3		70.044	0.333	0.000	0.81		113.2	SURCHARGED
S16.003	SWMH-40.4		69.990	0.421	0.000	1.20		100.8	SURCHARGED
S17.000	SWMH-44.1		70.004	0.304	0.000	0.50		29.3	SURCHARGED
S17.001	SWMH-44.2		69.979	0.387	0.000	0.37		18.7	SURCHARGED
S16.004	SWMH-40.5		69.967	0.419	0.000	1.00		130.6	SURCHARGED
S18.000	SWMH-41.1		70.052	0.232	0.000	0.65		130.5	SURCHARGED
S18.001	SWMH-41.2		70.009	0.356	0.000	0.86		173.5	SURCHARGED
S16.005	SWMH-40.6		69.903	0.425	0.000	1.72		311.2	SURCHARGED
S19.000	SWMH-42.1		69.672	-0.083	0.000	0.59		57.6	OK
S19.001	SWMH-42.2		69.612	0.057	0.000	1.00		97.3	SURCHARGED
S16.006	SWMH-40.7		69.527	0.172	0.000	2.83		396.4	SURCHARGED
S20.000	SWMH-43.1		69.687	-0.158	0.000	0.49		48.9	OK
S20.001	SWMH-43.2		69.631	-0.056	0.000	0.97		96.6	OK
S20.002	SWMH-43.3		69.469	-0.035	0.000	0.83		82.7	OK
S16.007	SWMH-40.8		69.373	0.043	0.000	1.26		468.4	SURCHARGED
S16.008	SWMH-40.9		69.271	0.000	0.000	1.38		387.0	OK
S16.009	SWMH-40.10		69.051	-0.149	0.000	0.99		467.7	OK
	SWMH-OUTFALL		68.921	-0.179	0.000	0.07		24.2	OK

Clifton Scannell Emerson Associates				
Seefort Lodge Castledawson	Enginenode Clonee			
Blackrock	Surface Watre Network 1	4		
County Dublin		Micro		
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage		
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamatje		
Micro Drainage	Network 2017.1.2			

PN	US/MH Name	Level Exceeded
S3.005	SWMH-20.6	
S3.006	SWMH-20.7	
S3.007	SWMH-20.8	
S11.000	SWMH-10.1	
S11.001	SWMH-10.2	
S11.002	SWMH-10.3	
S11.003	SWMH-10.4	
S11.004	SWMH-10.5	
S11.005	SWMH-10.6	
S12.000	SWMH-11.1	
S11.006	SWMH-10.7	
S11.007	SWMH-10.8	
S13.000	SWMH-30.1	
S13.001	SWMH-30.2	
S13.002	SWMH-30.3	
S14.000	SWMH-31.1	
S14.001	SWMH-31.2	
S13.003	SWMH-30.4	
S15.000	SWMH-32.1	
S15.001	SWMH-32.2	
S13.004	SWMH-30.5	
\$13.005 \$13.006	SWMH-30.6 SWMH-30.7	
S15.000	SWMH-30.7 SWMH-40.1	
S16.000	SWMH-40.1 SWMH-40.2	
S16.001	SWMH-40.2 SWMH-40.3	
S16.002	SWMH-40.4	
S17.000	SWMH-44.1	
S17.000	SWMH-44.2	
S16.004	SWMH-40.5	
S18.000	SWMH-41.1	
S18.001	SWMH-41.2	
S16.005	SWMH-40.6	
S19.000	SWMH-42.1	
S19.001	SWMH-42.2	
S16.006	SWMH-40.7	
S20.000	SWMH-43.1	
S20.001	SWMH-43.2	
S20.002	SWMH-43.3	
S16.007	SWMH-40.8	
S16.008	SWMH-40.9	
S16.009	SWMH-40.10	
S3.008	SWMH-OUTFALL	

Clifton S	Scannell	LINELSON A	ASSOCIA	iles				Page 34	
Seefort 1	Lodge Ca	stledaws	on	Engine	enode Clonee	9		-	
Blackrocl	-			Surface Watre Network 1				4	
County Di				041140				1 m	
-	07/2020 1	0.00		Decim	ned by Zvoni	min Colle		Micro	
				-	-		IC	Drainage	
File GIS COMPOUND.MDX Micro Drainage					ed by Conor	Donerty		Diamage	
Micro Dra	ainage			Networ	ck 2017.1.2				
<u>100 yea</u>	<u>r Return</u>	<u>Period S</u>	ummary	<u>of Cri</u> <u>1) for</u>	tical Resul Storm	ts by Ma	kimum Le	evel (Rank	
	Hot ble Headlos ul Sewage p Numbe: Numb	Hot Start Start Leve s Coeff (G er hectare c of Input per of Onl:	Factor (mins) (l (mm) (lobal) (l/s) Hydrogr ine Cont	1.000 0 0.500 Fl 0.000 caphs 0 fi	<u>Criteria</u> Additional Fl MADD Fact ow per Person Number of Ston Number of Time Number of Real	or * 10m³/ Inlet Co per Day (rage Struct	ha Storag effiecien l/per/day cures 1 grams 0	ge 2.000 nt 0.800	
	NUMDE	er of UIII:	ine Cont	rois U r	Number of Rea.	L TIME Cont	rois U		
	-			etic Rair	nfall Details		202		
	Ra	infall Mod		land and	FSR Ireland Cv (Ratio R 0.			
		M5-60 (m		Talla alla	17.800 Cv (
	Margi	n for Floo		-	(mm) 300.0				
	Margi	n for Floc		sis Time:	step Fine In				
	Margi	n for Floc		sis Time:					
	Margi	n for Floc		sis Time:	step Fine In				
	Margi			sis Time:	step Fine In	ertia Stat		r	
	-	Prof	Analy	sis Time: DTS Sta	step Fine In	ertia Stat Summer a 360, 480,	us OFF and Winte 960, 144	0	
	Du Return P	Prof ration(s) eriod(s) (Analy ile(s) (mins) 2 years)	sis Time: DTS Sta	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winte 960, 144 5, 30, 10	0	
	Du Return P	Prof ration(s)	Analy ile(s) (mins) 2 years)	sis Time: DTS Sta	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winte 960, 144	0	
	Du Return P	Prof ration(s) eriod(s) (Analy ile(s) (mins) 2 years)	sis Time: DTS Sta	step Fine In atus ON	ertia Stat Summer a 360, 480,	us OFF and Winte 960, 144 5, 30, 10	0	
	Du Return P	Prof ration(s) eriod(s) (Analy ile(s) (mins) (years) ge (%)	sis Time: DTS Sta	step Fine In atus ON 60, 120, 240, First (X)	ertia Stat Summer a 360, 480, 5	us OFF 960, 144 5, 30, 10 0, 10, 1	0	
PN	Du Return P Cl	Prof ration(s) eriod(s) (Analy ile(s) (mins) : years) ge (%) Return	sis Time. DTS Sta	step Fine In atus ON 60, 120, 240,	ertia Stat Summer a 360, 480, 5	us OFF 960, 144 5, 30, 10 0, 10, 1	0 0 2) Overflow	
	Du Return P Cl US/MH Name	Prof ration(s) eriod(s) (imate Chan Storm	Analy ile(s) (mins) (years) ge (%) Return Period	sis Time: DTS Sta 15, 30, 6 Climate Change	step Fine In atus ON 60, 120, 240, First (X) Surcharge	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
s3.000	Du Return P Cl US/MH	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter	Analy ile(s) (mins) : years) ge (%) Return	sis Time: DTS Sta 15, 30, 6 Climate Change +10%	step Fine In atus ON 60, 120, 240, First (X)	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
s3.000 s3.001	Du Return Po Cl US/MH Name SWMH-20.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter	Analy ile(s) (mins) 1 years) ge (%) Return Period 100	sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
S3.000 S3.001 S4.000 S5.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100	sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Winter	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-22.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100	sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 100, 100, 100, 100, 100, 10</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100	sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.2 SWMH-21.3 SWMH-20.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 50, 120, 240, 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-22.1 SWMH-21.3 SWMH-20.3 SWMH-20.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 50, 120, 240, 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-2.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta IDTS Sta IDT</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-3.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Time: DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine In atus ON 60, 120, 240, First (X) Surcharge 30/15 Summer 30/15 Summer	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-3.1 SWMH-1.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta DTS Sta 15, 30, 6 climate Change +10% +10% +10% +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 100, 100, 60, 100, 100, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 100, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.2 SWMH-1.3 SWMH-2.1 SWMH-2.1 SWMH-2.5	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) 1 years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta DTS Sta 15, 30, 6 climate change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 120, 60, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-20.4 SWMH-1.1 SWMH-1.2 SWMH-1.1 SWMH-1.2 SWMH-2.1 SWMH-2.1 SWMH-3.1 SWMH-3.1 SWMH-4.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 120, 240, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.4 SWMH-2.1 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-3.1 SWMH-3.1 SWMH-4.1 SWMH-4.2	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	<pre>sis Time: DTS Sta DTS Sta 15, 30, 6 climate Change +10%</pre>	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001 \$9.002	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-21.1 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-2.1 SWMH-4.1 SWMH-4.2 SWMH-4.3	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Time: DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine In atus ON 60, 120, 240, 60, 120, 240, First (X) Surcharge 30/15 30/15 30/15 Summer	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-21.1 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-1.3 SWMH-2.1 SWMH-4.1 SWMH-4.2 SWMH-4.3 SWMH-5.1	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Time: DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	<pre>step Fine In atus ON 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 240, 60, 120, 120, 120, 120, 120, 120, 120, 12</pre>	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	
\$3.000 \$3.001 \$4.000 \$5.000 \$4.001 \$4.002 \$3.002 \$3.003 \$6.000 \$6.001 \$7.000 \$6.002 \$8.000 \$6.003 \$3.004 \$9.000 \$9.001 \$9.002 \$10.000	Du Return P Cl US/MH Name SWMH-20.1 SWMH-20.2 SWMH-21.1 SWMH-21.1 SWMH-21.2 SWMH-21.3 SWMH-20.3 SWMH-20.3 SWMH-20.3 SWMH-20.4 SWMH-21.2 SWMH-21.1 SWMH-1.1 SWMH-1.2 SWMH-1.3 SWMH-2.1 SWMH-4.1 SWMH-4.3 SWMH-4.4	Prof ration(s) eriod(s) (imate Chan Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 30 Winter	Analy. ile(s) (mins) : years) ge (%) Return Period 100 100 100 100 100 100 100 10	sis Time: DTS Sta DTS Sta 15, 30, 6 Climate Change +10% +10% +10% +10% +10% +10% +10% +10%	step Fine In atus ON 60, 120, 240, 60, 120, 240, Surcharge 30/15 Sumer 30/15 Summer 30/15<	ertia Stat Summer a 360, 480, 1 First (Y)	us OFF and Winte 960, 144 5, 30, 10 0, 10, 1 First (2	0 0 2) Overflow	

Clifton Scannell Emerson Associates				
Seefort Lodge Castledawson	Enginenode Clonee			
Blackrock	Surface Watre Network 1	<u> </u>		
County Dublin		Micro		
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainage		
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamatje		
Micro Drainage	Network 2017.1.2	1		

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
s3.000	SWMH-20.1	70.982	1.237	0.000	1.37		82.6	FLOOD RISK	
S3.001	SWMH-20.2	70.762	1.189	0.000	1.57		89.9	FLOOD RISK	
S4.000	SWMH-21.1	70.887	0.887	0.000	0.14		7.9	SURCHARGED	
S5.000	SWMH-22.1	70.914	0.864	0.000	0.61		35.8	SURCHARGED	
S4.001	SWMH-21.2	70.880	0.948	0.000	0.89		51.0	SURCHARGED	
S4.002	SWMH-21.3	70.830	0.989	0.000	1.35		81.6	SURCHARGED	
S3.002	SWMH-20.3	70.607	1.118	0.000	1.38		175.0	SURCHARGED	
S3.003	SWMH-20.4	70.522	1.089	0.000	1.26		179.0	SURCHARGED	
S6.000	SWMH-1.1	70.487	0.920	0.000	0.38		55.0	FLOOD RISK	
S6.001	SWMH-1.2	70.453	1.077	0.000	0.55		71.5	FLOOD RISK	
S7.000	SWMH-2.1	70.442	0.943	0.000	0.23		33.3	FLOOD RISK	
S6.002	SWMH-1.3	70.421	1.113	0.000	1.21		125.9	FLOOD RISK	
S8.000	SWMH-3.1	70.410	0.943	0.000	0.38		54.0	FLOOD RISK	
S6.003	SWMH-1.4	70.375	1.105	0.000	2.61		222.0	FLOOD RISK	
S3.004	SWMH-20.5	70.225	0.975	0.000	1.56		403.1	SURCHARGED	
S9.000	SWMH-4.1	70.167	0.633	0.000	0.33		31.0	FLOOD RISK	
S9.001	SWMH-4.2	70.146	0.714	0.000	0.61		56.7	FLOOD RISK	
S9.002	SWMH-4.3	70.106	0.778	0.000	0.68		63.2	FLOOD RISK	
S10.000	SWMH-5.1	70.081	0.759	0.000	0.39		36.5	SURCHARGED	
S9.003	SWMH-4.4	70.057	0.838	0.000	1.90		133.6	SURCHARGED	
S9.004	SWMH-4.5	69.956	0.768	0.000	2.01		138.7	SURCHARGED	

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	4			
County Dublin		Micro			
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainarre			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamarje			
Micro Drainage	Network 2017.1.2	1			

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow
s3.005	SWMH-20.6	30 Winter	100	+10%	5/15 Summer	~	
S3.005	SWMH-20.7	30 Winter		+10%	5/15 Summer		
S3.007	SWMH-20.8	30 Winter	100	+10%	30/15 Summer		
S11.000	SWMH-10.1	15 Winter	100	+10%	30/15 Summer		
S11.000	SWMH-10.2	15 Winter	100	+10%	30/15 Summer		
S11.001	SWMH-10.3	30 Winter	100	+10%	30/15 Summer		
s11.003	SWMH-10.4	30 Winter		+10%	30/15 Summer		
S11.004	SWMH-10.5	30 Winter		+10%	30/15 Summer		
S11.005	SWMH-10.6	30 Winter		+10%	30/15 Summer		
S12.000	SWMH-11.1	30 Winter	100	+10%			
S11.006	SWMH-10.7	30 Winter	100	+10%	30/15 Summer		
S11.007	SWMH-10.8	30 Winter		+10%	5/30 Winter		
S13.000	SWMH-30.1	15 Winter	100	+10%	30/15 Summer		
S13.001	SWMH-30.2	15 Winter	100	+10%	5/15 Winter		
S13.002	SWMH-30.3	15 Winter		+10%	5/15 Summer		
S14.000	SWMH-31.1	15 Winter	100	+10%	30/15 Summer		
S14.001	SWMH-31.2	15 Winter	100	+10%	30/15 Summer		
S13.003	SWMH-30.4	15 Winter	100	+10%	5/15 Summer		
S15.000	SWMH-32.1	15 Winter	100	+10%	-,		
S15.001	SWMH-32.2	15 Winter	100	+10%			
S13.004	SWMH-30.5	15 Winter	100	+10%	30/15 Winter	ŕ	
S13.005	SWMH-30.6	15 Winter		+10%		- 100/1440 Winter	
S13.006	SWMH-30.7	15 Winter	100	+10%		c 100/1440 Summer	
S16.000	SWMH-40.1	15 Winter	100	+10%	30/15 Winter		
S16.001	SWMH-40.2	15 Winter	100	+10%	30/15 Summer		
S16.002	SWMH-40.3	15 Winter	100	+10%	30/15 Summer		
S16.003	SWMH-40.4	15 Winter	100	+10%	30/15 Summer		
S17.000	SWMH-44.1	15 Winter	100	+10%	30/15 Summer	<u>c</u>	
S17.001	SWMH-44.2	15 Winter	100	+10%	30/15 Summer		
S16.004	SWMH-40.5	15 Winter	100	+10%	5/15 Winter	c .	
S18.000	SWMH-41.1	15 Winter	100	+10%	30/15 Summer	<u>c</u>	
S18.001	SWMH-41.2	15 Winter	100	+10%	30/15 Summer	<u> </u>	
S16.005	SWMH-40.6	15 Winter	100	+10%	5/15 Summer	<u>c</u>	
S19.000	SWMH-42.1	15 Winter	100	+10%	100/15 Summer	<u>r</u>	
S19.001	SWMH-42.2	15 Winter		+10%	30/15 Summer		
S16.006	SWMH-40.7	15 Winter	100	+10%	30/15 Summer	c .	
S20.000	SWMH-43.1	15 Winter	100	+10%	100/15 Winter		
S20.001	SWMH-43.2	15 Winter	100		100/15 Summer		
S20.002	SWMH-43.3	15 Winter	100	+10%	100/15 Summer	<u>r</u>	
S16.007	SWMH-40.8	15 Winter	100	+10%	30/15 Summer		
S16.008	SWMH-40.9	15 Winter	100	+10%	100/15 Summer		
S16.009	SWMH-40.10	15 Winter	100	+10%	100/15 Summer	<u>r</u>	
S3.008	SWMH-OUTFALL	1440 Winter	100	+10%			
			982-20	17 XP 9	olutions		
		01	JUZ ZU	TI NT O	OT UCTONS		

Clifton Scannell Emerson Associates					
Seefort Lodge Castledawson	Enginenode Clonee				
Blackrock	Surface Watre Network 1	<u> </u>			
County Dublin		Micro			
Date 01/07/2020 10:09	Designed by Zvonimir Salkic	Drainarre			
File GIS COMPOUND.MDX	Checked by Conor Doherty	Diamaye			
Micro Drainage	Network 2017.1.2				

	US/MH	Overflow	Water Level	Surcharged Depth		Flow /	Overflow	Pipe Flow	
PN	Name	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(l/s)	Status
S3.005	SWMH-20.6		69.856	0.752	0.000	2.08		537.6	SURCHARGED
S3.006	SWMH-20.7		69.523	0.496	0.000	3.58		538.4	SURCHARGED
S3.007	SWMH-20.8		69.233	0.225	0.000	2.94		538.3	SURCHARGED
S11.000	SWMH-10.1		70.624	0.907	0.000	1.10		155.6	FLOOD RISK
S11.001	SWMH-10.2		70.505	0.959	0.000	1.64		170.5	SURCHARGED
S11.002	SWMH-10.3		70.455	0.947	0.000	1.40		189.9	FLOOD RISK
S11.003	SWMH-10.4		70.283	0.874	0.000	1.62		222.1	SURCHARGED
S11.004	SWMH-10.5		70.009	0.710	0.000	1.19		247.8	SURCHARGED
S11.005	SWMH-10.6		69.801	0.624	0.000	1.37		268.9	SURCHARGED
S12.000	SWMH-11.1		69.590	0.290	0.000	0.54		50.1	SURCHARGED
S11.006	SWMH-10.7		69.565	0.512	0.000	2.61		301.2	SURCHARGED
S11.007	SWMH-10.8		69.410	0.435	0.000	1.93			SURCHARGED
S13.000	SWMH-30.1		70.962	1.077	0.000	0.64			FLOOD RISK
S13.001	SWMH-30.2		70.866	1.203	0.000	0.93			FLOOD RISK
S13.002	SWMH-30.3		70.714	1.230	0.000	1.30			SURCHARGED
S14.000	SWMH-31.1		70.933	0.758	0.000	1.25			FLOOD RISK
S14.001	SWMH-31.2		70.747	0.709	0.000	1.59			FLOOD RISK
S13.003	SWMH-30.4		70.670	1.220	0.000	2.43		229.0	SURCHARGED
S15.000	SWMH-32.1		69.623	-0.149	0.000	0.73		101.6	OK
S15.001	SWMH-32.2		69.518	-0.114	0.000	0.73		82.7	OK
S13.004	SWMH-30.5		69.481	0.221	0.000	1.25			SURCHARGED
S13.005	SWMH-30.6		69.266	0.146	0.000	2.13			SURCHARGED
S13.006	SWMH-30.7		69.145	0.095	0.000	1.50			SURCHARGED
S16.000	SWMH-40.1		70.748	0.764	0.000	0.28			SURCHARGED
S16.001	SWMH-40.2		70.735	0.833	0.000	0.81			SURCHARGED
S16.002	SWMH-40.3		70.664	0.953	0.000	0.96			FLOOD RISK
S16.003	SWMH-40.4		70.560	0.991	0.000	1.55			SURCHARGED
S17.000	SWMH-44.1		70.577	0.877	0.000	0.58			FLOOD RISK
S17.001	SWMH-44.2		70.547	0.955	0.000	0.49			SURCHARGED
S16.004	SWMH-40.5		70.530	0.982	0.000	1.27			SURCHARGED
S18.000	SWMH-41.1		70.704	0.884	0.000	0.74			FLOOD RISK
S18.001	SWMH-41.2		70.621	0.968	0.000	1.11			FLOOD RISK
S16.005	SWMH-40.6		70.423	0.945	0.000	2.26			SURCHARGED
S19.000	SWMH-42.1		70.058	0.303	0.000	0.70			SURCHARGED
S19.001	SWMH-42.2		69.983	0.428	0.000	1.29			SURCHARGED
S16.006	SWMH-40.7		69.768	0.413	0.000	3.76			SURCHARGED
S20.000	SWMH-43.1		69.854	0.009	0.000	0.61			SURCHARGED
S20.001	SWMH-43.2		69.789	0.102	0.000	1.19			SURCHARGED
S20.002	SWMH-43.3		69.635	0.131	0.000	0.94			SURCHARGED
S16.007	SWMH-40.8		69.538	0.208	0.000	1.66			SURCHARGED
S16.008	SWMH-40.9		69.391	0.120	0.000	2.17			SURCHARGED
S16.009	SWMH-40.10		69.230	0.030	0.000	1.29			SURCHARGED
S3.008	SWMH-OUTFALL		69.076	-0.024	0.000	0.07		24.2	OK

Clifton Scannell Emerson Associates							
Seefort Lodge Castledawson	Enginenode Clonee						
Blackrock	Surface Watre Network 1	<u>Y</u>					
County Dublin		Micco					
Date 01/07/2020 10:09	Designed by Zvonimir Salkic						
File GIS COMPOUND.MDX	Checked by Conor Doherty	Drainage					
Micro Drainage	Network 2017.1.2						

PN	US/MH Name	Level Exceeded
S3.005	SWMH-20.6	
S3.006		
S3.007	SWMH-20.8	
S11.000	SWMH-10.1	
S11.001	SWMH-10.2	
S11.002	SWMH-10.3	
S11.003	SWMH-10.4	
S11.004	SWMH-10.5	
S11.005	SWMH-10.6	
S12.000	SWMH-11.1	
S11.006	SWMH-10.7	
S11.007	SWMH-10.8	
S13.000	SWMH-30.1	
S13.001	SWMH-30.2	
s13.002	SWMH-30.3	
S14.000	SWMH-31.1	
S14.001	SWMH-31.2	
S13.003	SWMH-30.4	
S15.000	SWMH-32.1	
S15.001	SWMH-32.2	
S13.004	SWMH-30.5	
S13.005	SWMH-30.6	
S13.006	SWMH-30.7	
S16.000	SWMH-40.1	
S16.001	SWMH-40.2	
S16.002	SWMH-40.3	
S16.003	SWMH-40.4	
S17.000	SWMH-44.1	
S17.001	SWMH-44.2	
S16.004	SWMH-40.5	
S18.000	SWMH-41.1	
S18.001	SWMH-41.2	
S16.005	SWMH-40.6	
S19.000	SWMH-42.1	
S19.001	SWMH-42.2	
S16.006	SWMH-40.7	
S20.000	SWMH-43.1	
S20.001	SWMH-43.2	
S20.002	SWMH-43.3	
S16.007	SWMH-40.8	
S16.008	SWMH-40.9	
S16.009	SWMH-40.10	
S3.008	SWMH-OUTFALL	

Appendix E – Petrol Interceptor Details

۲

The Conder Range of Bypass Separators

The Conder Range of Bypass Separators are used to fully treat all flows generated by rainfall rates of up to 6.5mm/hr. Bypass Separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where only small spillages occur and the risk of spillage is small.

Performance

Conder Bypass Separators have been designed to treat all flow up to the designed nominal size. Any flow in excess of the nominal size is allowed to bypass the separation chamber thereby keeping the separated and trapped oil safe.

How it Works

Typical Application

- Car parks
- Roadways and major trunk roads
- Light industrial and goods yards

Features and Benefits

- Innovative design
- Compact and easy to handle/install
- Fully compliant to the Environment Agency's PPG3 guidelines
- Low product and install costs
- Full BSI certification
- Exceeds industry standards
- Easy to service
- Fully tested and verified with a range from CNSB 3 to CNSB 1000 (Class 1)

Step 1

۲

During the early part of a rain storm, which is a time of high oil contamination, all of the contaminated water flow passes through the sediment collection chamber and enters the separation chamber through a patented oil skimming and filter device.

Step 2

All of the oil then proceeds to the separation chamber where it is separated to the Class 1 standard of 5 mg/l and safely trapped.

Step 3

As the rainstorm builds up to its maximum and the level of oil contamination reduces significantly, the nominal size flow continues to pass through the separation chamber and any excess flow of virtually clean water is allowed to bypass directly to the outlet.

Specification Larger models up to CNSB 1000 are available.

		0							
Area Drained (m²)	Tank Code including Silt	Length including Silt (mm)	Silt Capacity (L)	Oil Storage Capacity (L)	Diameter (mm)	Height (mm)	Base to inlet Invert (mm)	Base to outlet Invert (mm)	Access (mm)
1667	CNSB3s/21	1400	300	45	1026	2200	1730	1680	750
2500	CNSB4.5s/21	1785	450	67.5	1026	1875	1270	1220	600
3333	CNSB6s/21	1975	600	90	1026	1875	1270	1220	600
4444	CNSB8s/21	2165	800	120	1026	1875	1270	1220	600
5555	CNSB10s/21	2485	1000	150	1026	1875	1270	1220	600
8333	CNSB15s/21	2670	1500	225	1210	2150	1450	1400	600
11111	CNSB20s/21	3115	2000	300	1210	2150	1450	1400	600
13889	CNSB25s/21	3555	2500	375	1210	2150	1450	1400	600
16667	CNSB30s/21	3470	3000	450	1510	2690	1770	1720	750
22222	CNSB40s/21	4040	4000	600	1510	2690	1770	1720	750
27778	CNSB50s/21	4655	5000	750	1510	2690	1770	1720	750
33333	CNSB60s/21	4415	6000	900	1880	3300	2025	1975	2 x 600
44444	CNSB80s/21	5225	8000	1200	1880	3300	2025	1975	2 x 600
55556	CNSB100s/21	6010	10,000	1500	1880	3300	2025	1975	2 x 600

Note: It is a requirement of PPG3 that you have a silt capacity either in your tank or in an upstream catch pit.

Conder Bypass Separators

Premier Tech Aqua UK's range of Conder Bypass Separators are used to fully treat all flows generated by rainfall rates of up to 6.5 mm/hr. Separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of spillage is small.

Performance

Conder Bypass Separators have been designed to treat all flow rates up to the designed nominal size. Any flow in excess of the nominal size is allowed to bypass the separation chamber, thereby keeping the separated and trapped oil safe.

Typical Applications Car parks

- Lar parks
- Roadways and major trunk roads
 - Light industrial and goods yards

Features and Benefits

- Innovative design
- Compact and easy to handle
- Low installation costs
- Full BSI certification
- Exceeds industry standards
- Easy to service
- Fully tested and verified with a range from CNSB 3 to CNSB 1000 (Class 1)

() How it works

During the early part of a rain storm, which is a time of high oll contamination, all the contaminated water flow passes through the sediment collection chamber and enters the separation chamber through a patented oll skimming

and filter device.

All the oil then proceeds to the separation chamber where it is separated to the Class 1 standard of 5 mg/L and safely tropped.

As the rainstorm builds up to its maximum and the level of oil contamination reduces significantly, the nominal size flow continues to pass through the separation

STEP 3

STEP 2

virtually clean water is allowed to

bypass directly to the outlet.

chamber and any excess flow of

Specifications

Area Drained (m2)	Tank Code inc. Silt	Length inc. Silt (mm)	silt Capacity (L)	Oil Storage Capacity (L)	Diameter (mm)	Height (mm)	Base to Inlet Invert (mm)	Base to Outlet Invert (mm)	Access (mm)
1667	CNSB3s/21	1400	300	45	1026	2200	1730	1680	750
2500	CNSB4.5s/21	1785	450	67.5	1026	1875	1270	1220	600
3333	CNSB6s/21	1975	600	06	1026	1875	1270	1220	600
4444	CNSB8s/21	2165	800	120	1026	1875	1270	1220	600
5555	CNSB10s/21	2485	1000	150	1026	1875	1270	1220	600
8333	CNSB15s/21	2670	1500	225	1210	2150	1450	1400	600
11111	CNSB20s/21	3115	2000	300	1210	2150	1450	1400	600
13889	CNSB25s/21	3555	2500	375	1210	2150	1450	1400	600
16667	CNSB30s/21	3470	3000	450	1510	2690	1770	1720	750
22222	CNSB40s/21	4040	4000	600	1510	2690	1770	1720	750
33333	CNSB60s/21	4415	6000	006	1880	3300	2025	1975	2 x 600
4444	CNSB80s/21	5225	8000	1200	1880	3300	2025	1975	2 × 600
55556	CNSB100s/21	6010	10,000	1500	1880	3300	2025	1975	2 x 600

Larger models up to CNSB 1000 are also available.

Note: It is a requirement that you have slit capacity either in your tank or in an upstream catch pit. Specifications for larger models available upon request.

Conder Full Retention Separators

Our range of Conder Full Retention Separators are designed to treat the full flow that can be delivered by a drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65 mm/hr.

Automatic closure device (ACD) fitted as standard

Features and BenefitsAll surface water is treated

Full Retention Separators are used where there is a risk of regular contamination from oil and a foreseeable risk of significant spillages.

Performance

All Conder Full Retention Separators have an automatic closure device (ACD) fitted as standard. This is compulsory for all compliant Full Retention Separators and prevents accumulated pollutants flowing through the unit when maximum storage level is reached.

Typical Applications

- Sites with a high-risk of oil contamination
 - Fuel storage depots
 - Refuelling facilities
- Petrol forecourts
- Vehicle maintenance areas/workshops
- Where discharge is to a sensitive environment

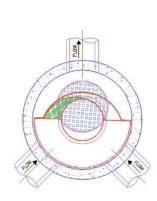
Conder Forecourt Separators	filling stations and other similar applications. The size of this separator has been applications and preventions and other similar applications.		ed, or the oil Forecourt Separators are an essential infrastructure requirement for all forecourts. This waste to ensure compliance with both health and safety and environmental legislation.	Typical Applications t Code of All Conder Forecourt Separators have an automatic • Petrol forecourts designed ACD fitted as etandard. This is commuted to a basicalling featilities		 Features and Benefits maximum storage level is reached. All surface water is treated Available in Class 1 and Class 2 Automatic Closure Device (ACD) fitted as standard Includes 2000L silt capacity 	I How it works	STEP 1 STEP 2 STEP 3	The decontaminated water then passes through the coalescing filter	tetalined for a sumplem period or beneficient period beneficient period and the remaining level alarm is activated. This waste	pollutants being retained in the	1430 peuton separate and rise to trie separator. Waste Management Code of surface of the water.	1430 Practice.	1730	¹⁷³⁰ Specifications	1980	Diamotor Baco to Inlat	2680 Tank Code Volume (L) Length (mm) Valuneter Height (mm) Dase Winter Dase Winter Dase Winter (mm) Access (mm)				2680 2000 4250 1800 2100 1550 750
	STEP 3	Retained pollutants must be emptied from the separator once	the level of oil is reached, or the oil level alarm is activated. This waste should be removed from the	separator under the terms of The Waste Management Code of Practice.					t Base to Inlet Invert (mm)	1295	1295	1480	1480	1780	1780	2030	2030	2730	2730	2730	2730	2730
				8 4 2		7 7			Diameter Height (mm) (mm)	1026 1655	26 1655	1210 1855	1210 1855	1510 2180	10 2180	80 2560	80 2560	00 3315	00 3315	2600 3315	2600 3315	2600 3315
		The decontaminated water then passes through the coalescing filter	before it is safely discharged from the separator, with the remaining pollutants being retained in the		•				Oil Storage Diamet Capacity (mm)		60 101	80 121	100 121	150 151	200 1510	300 1880	400 1880	500 2600	600 2600	700 26(800 260	1000 260
	STEP 2	The decontar passes throug	before it is se the separator pollutants bei	separator.				S	Silt Sto Capacity Ca	400	600	800	1000	1500	2000	3000	4000	5000	6000 (7000	8000	10,000 11
works		ers the lid is	period r than s oil,	e to the			/	tion	Length inc. Silt	2319	3414	3197	3957	3870	5060	5369	7059	4080	4805	5529	6254	6751
How it works	-	Contaminated water enters the separator where the liquid is	retained for a sufficient period to ensure that the lighter than water pollutants (such as oil,	petrol) separate and rise to the surface of the water.		-		Specifications	Tank Code inc. Silt	CNS4s/11	CNS6s/11	CNS8s/11	CNS10s/11	CNS15s/11	CNS20s/11	CNS30s/11	CNS40s/11	CNS50s/11	CNS60s/11	CNS70s/11	CNS80s/11	CNS100s/11
	STEP 1	tami arato	ined nsuri er po	ol) s. ace (Ŏ	Area Drained	222	_	444	556	833	1111	1667	2222	2778	3333	3889	4444	5556

Appendix F – SurfSep[™] Details

CDS Dime	nsions (mm)	1							
	CDS10404	CDS0604	CDS0606	CDS0804	CDS0806	CDS0808	CDS1010	CDS1012	CDS1015
А	370	370	370	370	370	370	500	500	500
В	444	815	615	810	830	810	800	800	830
С	1250	1985	1985	2080	2300	2480	2800	3000	3330
D	800	1200	200	1500	1500	1500	2000	2000	2000
E	1112	1665	1665	1966	1966	1966	2475	2475	2475
F	400	700	700	700	700	800	1000	1000	1000
G (dia)	400	600	600	800	800	800	1000	1000	1000
Н	400	400	600	400	600	800	1000	1200	1500

Selection Table — CDS Polypropylene Manhole Units

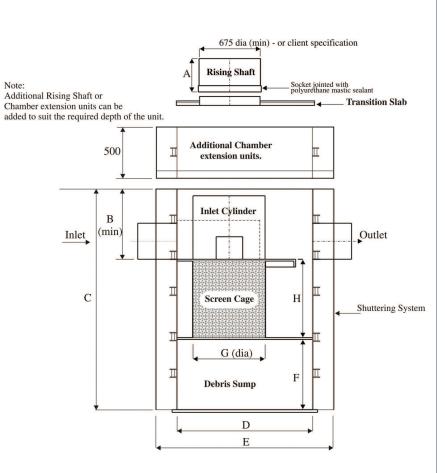
Model Reference	Hydraulic Peak Flow Rate l/s	Treatment Flow Rate l/s	Drainage Area — Impermeable m²	Chamber Diameter (mm)	Internal Pipe Diameter (mm)
CDS 0404	30	12.5	2,000	900	150/225
CDS 0604	70	23	5,000	1200	225
CDS 0606/01	140	38	10,000	1200	225-375
CDS 0606/02	200	38	15,000	1200	225-375
CDS 0806	350	49	25,000	1500	450
CDS 0808	400	72	30,000	1500	450
CDS 1010	480	116	35,000	2000	450
CDS 1012	550	152	40,000	2000	450/750
CDS 1015	700	211	50,000	2000	450/750
CDS 0804	275	31	20,000	1500	300


Proposed Peak Fow Rate for each model calculated using Rational Lloyd Davis with a rainfall intensity of 50mm/hr. For greater flows — special design/ construction required

In-Line CDS

For small catchment, these units are used within the drainage system in-line and are supplied as BBA Approved* complete manhole polypropylene units from the selection table above.

Off-Line CDS


Larger catchment areas and retrofit projects designed with larger surface runoff conveyance capacity can receive treatment using a CDS unit placed adjacent to the storm pipeline. Water is channeled to these offline CDS configurations using a diversion structure. The diversion structure and

its weir send the water quality flow to the offline CDS unit and also ensure larger flow events from less frequent storm events properly bypass the offline unit without cause flooding upstream of the unit.

Model Designation

A four digit number representing the screen diameter and screen height then follows to give the standard model designation for a CDS screen for installation into standard commercially available pre-fabricated manhole chambers. Example: CDS 0806 designates a separation screen dia. 0.8 m and screen height of 0.6m.

800.338.1122

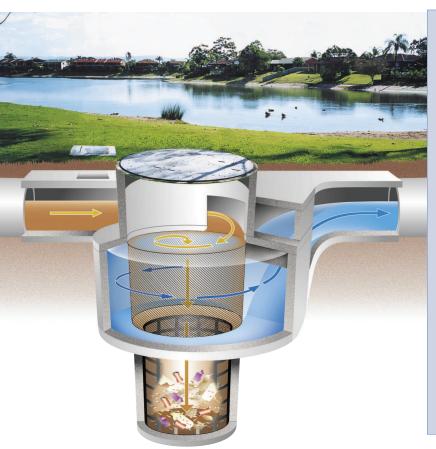
contechstormwater.com

Support

• Drawings and specifications are available at contechstormwater.com

• Site-specific design support is available from our engineers.

©2008 CONTECH Stormwater Solutions


Nothing in this catalog should be construed as an expressed warranty or an implied warranty of merchantability or fitness for any particular purpose. See the CONTECH standard quotation or acknowledgement for applicable warranties and other terms and conditions of sale.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266 related foreign patents or other patents pending. CDS is a trademark of CONTECH Construction Products Inc.

Surface Water 08/08

CANTECH

Surface Water Treatment SUDs Protector

The CDS Non Blocking screening technology is an innovative method of liquid/solid separation for stormwater runoff.

The technology accomplishes high efficiency separation of settleable particulate matter and capture of floatable material.

A unique feature is it's compact design. It is available as packaged systems, which can either be installed inside pre-cast concrete chamber rings, or complete BBA Approved Polyethylene manholes.

Applications

- Commercial/residential developments
- Municipal/roadway development
- Industrial development
- Pre-treatment for wetlands, ponds and swales
- Rainwater harvesting
- Pre-treatment for oil separators
- Pre-treatment for media and ground in-filtration systems
- Pre-treatment for underground detention/retention system

* BBA - this certificate relates to Pipex universal manholes and access chambers which are manufactures from welded polypropylene (PP)

Primary Features

- Effective Targets 80% solids removal
- Non-Blocking Unique design takes advantage of indirect screening and properly proportioned hydraulic forces that virtually makes the unit unblockable.
- Non-Mechanical The unit has no moving parts and requires no mechanical devices to support the solid separation function.
- Low Maintenane Costs The system has no moving parts and is fabricated of durable materials.
- Compact & Flexible Design and size flexibility enables the use of various configurations.
- High-flow Effectiveness The technology remains highly effective across a broad spectrum of flow ranges.
- Assured Pollutant Capture All materials captured are retained during high flow conditions.
- Safe & Easy Pollutant Removal Extraction methods allow safe and easy removal of pollutants without manual handling.

Sustainable Urban Drainage System (SUDS)

Developments that achieve SUDS integrate techniques for managing the surface water runoff so that it more closely replicates the natural pre-development conditions of the catchments. Additionally, best practices to control pollution close to their source of generation and achieve surface water quality improvements as well as provide amenity benefits are also required in achieving sustainable urban drainage systems.

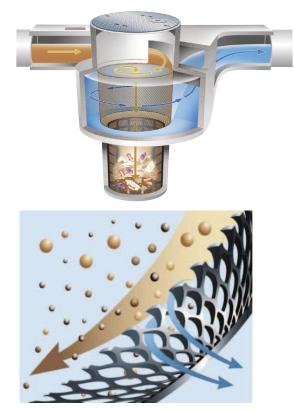
Presently in the UK, Scotland and Ireland, SUDS is a planning requirement to be incorporated into the surface water drainage whenever possible and in Scotland, this is a legal requirement.

Sizing Unit Selection

In stormwater applications, an analysis of the catchment in terms of its size, topography and land use will provide information for determining flow to be expected for various return periods.

The CDS is designed to treat flow that mobilizes the gross pollutants within the catchment. Since there are variations in catchment response due to region, land use and topography, it is recommended that the selection of flow to be treated will be for return periods of between 3 months and 1 year.

Balancing the cost to the operator against the benefits to the environment


Field evaluations to determine pollutant mobilization have found that the vast majority of pollutants are mobilized in flows that are well below the design capacity for the conveyance facility – typically known as the 'first flush'.

Therefore it is typical not to design the CDS models to process the conveyance system's maximum flow in order to achieve a very high level of pollutant removal.

The added value benefit to the operator is reduced civil costs without compromising the benefits to the environment.

How it works

Water and pollutants enter the system and are introduced tangentially inside the separation chamber forming a circular flow motion. Floatables and suspended solids are diverted to the slow moving centre of the flow. Negatively buoyant solids settle out to an undisturbed sump chamber below, while the water passes countercurrently through the separation screen. Floatables remain at the water surface and retained within the screen.

Surface Water Treatment Systems

Hydraulic Design

Every application requires a detailed hydraulic analysis to ensure the final installation will optimize solids separation without blocking the screen.

After the design flow has been determined, the appropriate standard model can be selected. A selection table is provided on page 4.

The Ultimate SUDs Protector

There are four principal areas of proprietary SUDs technology:

- Infiltration
- Flow control
- Storage/attenuation
- Treatment

When installed upstream of any proprietary SUDs technology, the CDS protects the receiving SUDs from fine solids and debris that would otherwise accumulate over time rendering the SUDs non-operational, as the worse case.

To remove fine solids and debris that would otherwise accumulate over time reducing the down stream effectiveness of downstream SUDs assets, CDS units have been successfully installed in front of:

- Soakaways
- Infiltration Trenches
- Filters
- Wetlands
- Ponds and Water Features
- Detention and Retention Systems
- Oil Separators
- Create storage systems

Infiltration

CDS units have been successfully installed in front of ground infiltration systems to remove grit. Fine solids and debris which accumulates in and around the SUDs causing visual degradation in the short term and accumulation of silt and grits leading to reduced volume in the long term.

Studies have also shown that heavy metals & PAH's accumulate within the SUDs over time before being released back to the environment resulting in elevated concentrations.

Operation & Performance

Performance Criteria

Note: Screen apertures of 4.8 mm and 2.4 mm are available.

Typical Aperture Performance

- Shall remove all solids with a single dimension greater than aperture size and positively contain those solids until the unit is cleaned.
- Shall remove and positively contain 100 percent of all neutrally buoyant particles with a single dimension greater than aperture size for all flow conditions to design capacity.
- Shall remove and positively contain 100 percent of all floating trash and debris with a single dimension greater than aperture size for all flow conditions to the design capacity
- Shall remove a minimum of 50 percent of oil and grease (as defined as the floating portion of total hexane extractable materials) for all flow conditions to the design capacity, without the addition of absorbents.
- Shall provide the following minimum particle removal efficiencies (based on a specific gravity of 2.65):

Maintenance

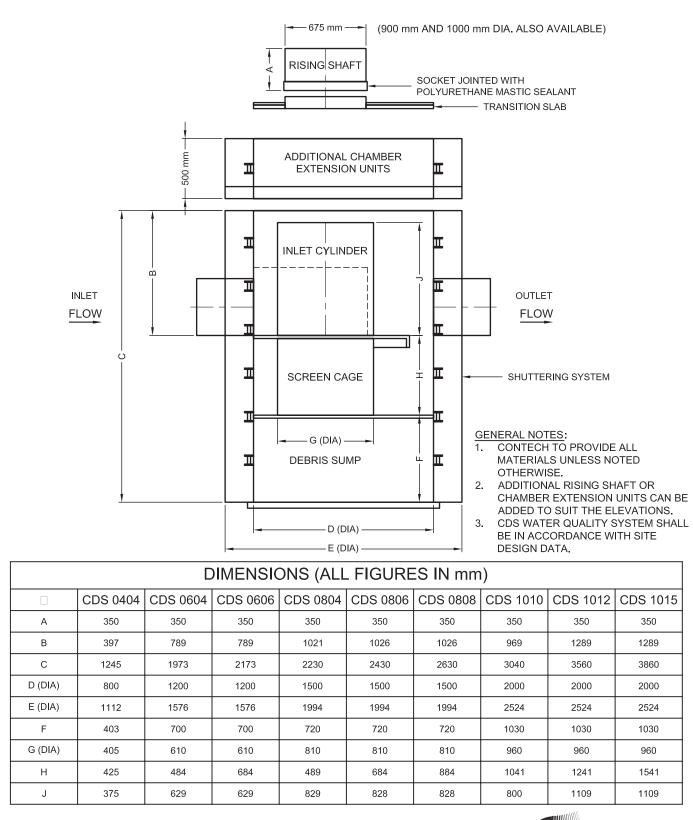
CDS maintenance can be site and drainage area specific. The installation should be inspected periodically to assure its condition to handle anticipated runoff. If pollutant loadings are known, then a preventive maintenance schedule can be developed based on runoff volumes processed.

New Installations

Check the condition of the installation after the first few events. This includes a visual inspection to ascertain that the unit is operating correctly and measuring the amount of deposition that has occurred in the unit. This may be achieved using a 'Dip Stick'.

Ongoing Operation

For the first 12 months the sediment sump capacity should be inspected quarterly and recorded. When the inspection indicates that the sediment is approaching the top of the sump (base of screen) a cleanout should be undertaken.


Cleaning Methods

- Eduction (Suction)
- Basket Removal
- Mechanical Grab

Maintenance Cycle

Minimum once per year. Depending on the pollutant load it may be necessary to maintain the installation more frequently.

The operator shall be able to devise the most efficient maintenance schedule for any particular installation over a 12 month operating cycle.

PROPRIETARY INFORMATION -NOT TO BE USED FOR CONSTRUCTION PURPOSES

800-526-3999

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,788,848; 6,641,720; 6,511,595; 6,581,783; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

TYPICAL DETAIL CDS[®] SURFSEP SYSTEM PLASTIC CHAMBER CONFIGURATION

303-796-2233 303-796-2239 FAX

DATE:10/27/11 SCALE: NONE

FILE NAME: SURFSEP TYP. DET. W/ TABLE DRAWN: SCF

CHECKED: JAG

Appendix G – Site Specific Flood Risk Assessment Report

Health and Safety

Clifton Scannell Emerson Associates

Site-Specific Flood Risk Assessment Report EngineNode Data Centre

Client: EngineNode

Date: 13th February 2020

Job Number: 18_086

	Civil	Structural	Transport	Environmental	Project
	Engineering	Engineering	Engineering	Engineering	Management
CONSULTING ENGINEERS					

Clifton Scannell Emerson Associates Limited, Consulting Engineers, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland. T. +353 1 2885006 F. +353 1 2833466 E. info@csea.ie W. www.csea.ie

Document Control Sheet

Project Name:	EngineNode Data Centre
Project Number:	18_086
Report Title:	Site-Specific Flood Risk Assessment Report
Filename:	RPT-18_086-005

ls	ssue No.	Issue Status	Date	Prepared by	Checked by
	1st	DRAFT	11/02/2020	SE	RG
	2 nd	FINAL	13/02/2020	SE	RG

Table of Contents

1	Introdu	ction	. 4
	1.1	Background	. 4
	1.2	Background Information	. 5
	1.3	Impact of Climate Change on Flood Risk	. 8
	1.4	OPW Flood Risk Maps	. 9
	1.5	Site-Specific Flood Risk Assessment for Development	. 9
	1.6	Flood Risk Assessment Stages	. 9
2	Stage 1	: Flood Risk Identification	10
	2.1	General	
	2.2	Source of Information	10
	2.3	Source-Path-Receptor	12
3	Stage 2	2: Initial Flood Risk Assessment	13
	3.1	Fluvial Flooding from existing Ditches	13
	3.2	Pluvial Flooding from Surface Water Drainage	14
	3.3	Ground Water Flooding	14
	3.4	Flood Zone Category	
4	Stage 3	B: Detailed Flood Risk Assessment	15
	4.1	Proposed Surface Water Management measures	15
	4.2	Impact of Proposed Arrangement of the Existing Ditches	15
	4.3	Assessment of Residual Risk	17
5	Conclu	sion	18
		Historic flood maps and benefiting lands maps available on www.floodmaps.ie	
Арр	endix B	CFRAM Flood Risk Map	20
Арр	endix C	: Surface Water Operation and Maintenance (O&M) Activities	21
		: Drawings of Proposed Alterations to Existing Ditches	
Арр	endix F	Related Correspondence Between CSEA and Meath County Council	29

List of Figures

Figure 1 Site Location, Gunnocks, Conlee, Co. Meath 4
Figure 2 Source-Path-Receptor Model (extracted from OPW Guidelines, 2009) 5
Figure 3 Example of the three flood risk zones (extracted from OPW Guidelines, 2009) 6
Figure 4 FRA Sequential Approach (extracted from OPW Guidelines, 2009)7
Figure 5 Sequential approach mechanism in the planning process (extracted from OPW Guidelines,
2009)
Figure 6 Tolka River network and proposed site location. Extract from "UoM 9 - Liffey and Dublin Bay
Hydraulic Modelling Report for Dunboyne Area"11
Figure 7 Location of the proposed development site on an extract from EPA map viewer
https://gis.epa.ie/EPAMaps/; with the active layers river networks, stream and flow direction 11
Figure 8 FSU run for ungauged sites showing the subject ditch's catchment area and characteristics 13
Figure 9 Proposed arrangement for the existing ditches running in the site
Figure 10 Proposed surface water drainage layout 14
Figure 11 Location of the proposed diversion channel16
Figure 12 Hydraulic analysis of the proposed channel used for diversion (Calculated by Hydraflow
Civil3D)
Figure 13 Location of cross-sections used in the hydraulic model 17
Figure 14 HEC-RAS resulted longitudinal water surface profile for the modelled ditch 18

1 Introduction

1.1 Background

CSEA was requested to undertake a Sit-specific Flood Risk Assessment (SSFRA) to support the submission of a planning application for the EngineNode Limited for the proposed data storage and energy centre development on site at Gunnocks, Conlee, Co. Meath.

The net development area is approximately 25ha. The site is boarded to the west by R147 and approximately 270m east of the Motorway M3 (as shown in figure 1 below). The existing site is a greenfield site which is currently used as agricultural land.

The proposed development consists of four number two-storey data storage buildings, each containing data halls within each building, a single storey energy centre building, an AGI, HV electrical substation, and ancillary services.

The objective of this report is to assess the site and development proposal in accordance to the requirements of the OPW guidelines, 2009, "The Planning System and Flood Risk Management Guidelines for Planning Authorities".

Figure 1 Site Location, Gunnocks, Conlee, Co. Meath

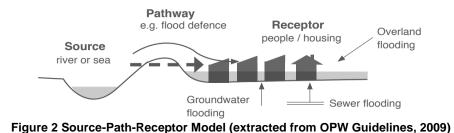
1.2 Background Information

1.2.1 Catchment-based Flood Risk Assessment and Management

Catchment-based Flood Risk Assessment and Management (CFRAM) program has been implemented by the Office of Public Works (OPW) as a competent authority in Ireland for the EU floods directive. Over 29 Flood Risk Management Plans (FRMPs) have been prepared in coordination with the implementation of the Water Framework Directive (WFD). The FRMPs involved undertaking detailed engineering assessment and producing flood protection measures. The assessment addressed the potential impact of the proposed measures on waterbodies hydromorphology and quality status.

1.2.2 OPW Flood Guidelines for Planning Authorities

The purpose of The Planning System and Flood Risk Management Guidelines for Planning Authorities published by the OPW in 2009 (OPW Guidelines) is to introduce comprehensive mechanisms for the incorporation of flood risk identification, assessment and management into the planning process.


1.2.3 Objectives of OPW Guidelines

Floods can have broad range of impact on people, property, infrastructure and the environment. Flood can cause damage to the infrastructure including electricity and other utilities with significant detrimental impacts on local and regional economies. This may also cause long-term closure of businesses leading to economic loss other than the damage caused during the event. The core objectives of the OPW Guidelines include:

- Avoid inappropriate development in areas at risk of flooding;
- Avoid new developments increasing flood risk elsewhere, including that which may arise from surface water run-off;
- Ensure effective management of residual risks for development permitted in floodplains;
- Improve the understanding of flood risk among relevant stakeholders; and
- Ensure that the requirements of EU and national law in relation to the natural environment and nature conservation are complied with at all stages of flood risk management.

1.2.4 Flood Risk Assessment FRA Key Concepts

For carrying out a Site-specific Flood Risk Assessment (SSFRA), the OPW Guidelines recommend using Source-Path-Receptor concept model to identify where the flood originates from, what is the floodwaters path and the areas in which assets and people might be affected by such flooding (section 2.18 of the OPW Guidelines, 2009). Figure 2 show a schematic representation of S-P-R model.

Title: Site Specific Flood Risk Assessment Report

The other key concept in flood management is the "Flood Risk". it is "the combination of the likelihood of flooding and the potential consequences arising". Consideration of flood risk must be addressed in terms of:

- The likelihood of flooding. Expressed as percentage probability or exceedance each year; and;
- The consequences of flooding as the associated hazard e.g. flood depth and velocity.

Flood risk is then expressed with the relationship:

Flood Risk = Likelihood of flooding x Consequences of flooding.

1.2.5 Flood Zones

Flood Zone is the spatial inundation area that fall within a range of likelihood of flooding. The OPW Guidelines specified three levels of flood zones:

Flood Zone A – where the probability of flooding from rivers and the sea is highest (greater than 1% Annual Exceedance Probability (AEP) or 1 in 100 for river flooding or 0.5% AEP or 1 in 200 for coastal flooding);

Flood Zone B – where the probability of flooding from rivers and the sea is moderate (between 0.1% AEP or 1 in 1000 and 1% AEP or 1 in 100 for river flooding and between 0.1% AEP or 1 in 1000 year and 0.5% AEP or 1 in 200 for coastal flooding);

Flood Zone C – where the probability of flooding from rivers and the sea is low (less than 0.1% AEP or 1 in 1000 for both river and coastal flooding). Flood Zone C covers all areas of the plan which are not in Zones A or B.

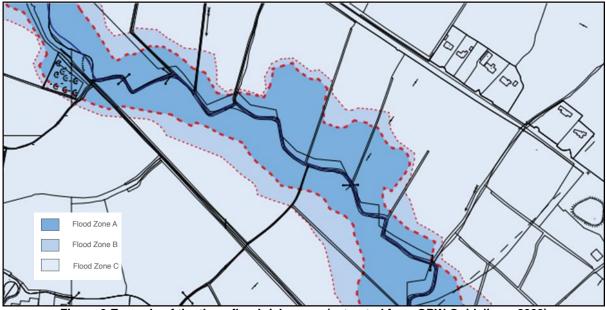


Figure 3 Example of the three flood risk zones (extracted from OPW Guidelines, 2009)

According to the OPW Guidelines, the planning implication of each of the zones mentioned above are: **Zone A** - High probability of flooding. Most types of development would be considered inappropriate in this zone.

Zone B - Moderate probability of flooding. Highly vulnerable development, such as hospitals, residential care homes, Garda, fire and ambulance stations, dwelling houses and primary strategic transport and utilities infrastructure, would generally be considered inappropriate in this zone

Zone C - Low probability of flooding. Development in this zone is appropriate from a flood risk perspective (subject to assessment of flood hazard from sources other than rivers and the coast) but would need to meet the normal range of other proper planning and sustainable development considerations.

Title: Site Specific Flood Risk Assessment Report

Clifton Scannell Emerson Associates

1.2.6 Sequential Approach

Sequential approach is an important tool used in the planning process which gives preference to locate a new development in the Low Flood Risk Zone and ensures that it does not have an adverse impact of flooding.

According to the sequential approach, If the development lies within a Flood Zone, it is required to consider measures for mitigating flood impact to an acceptable level. It is also required to provide justifications and strategic reasons for locating a proposed development on a higher risk flood zone (see Figure 4 and 5 below).

Figure 4 FRA Sequential Approach (extracted from OPW Guidelines, 2009)

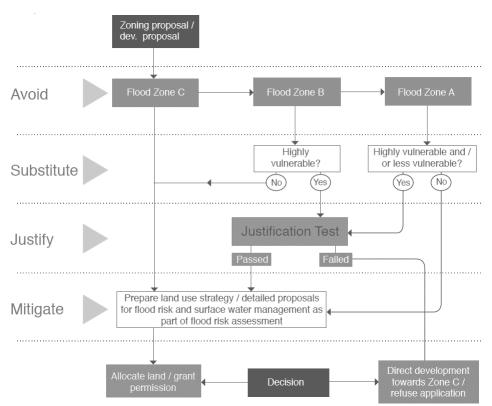


Figure 5 Sequential approach mechanism in the planning process (extracted from OPW Guidelines, 2009)

Title: Site Specific Flood Risk Assessment Report

1.2.7 Development Classification

The OPW Guidelines provided three vulnerability categories based on the type of development which are:

- **Highly vulnerable:** This includes essential infrastructure, such as primary transport and utilities distribution, electricity generating power stations and sub-stations
- Less vulnerable: This category includes Land and buildings used for holiday or short-let caravans and camping, subject to specific warning and evacuation plans;
- Water compatible: Includes water-based flood control and recreational developments and other amenity open space, outdoor sports and recreation and essential facilities such as changing rooms.

The OPW Guidelines, as described in Section 2.2.4 of this report, sets out a sequential approach which makes use of flood risk assessment and classifies vulnerability of flooding of different types of development.

Table 3.2 of the OPW Guidelines illustrates those types of development that would be appropriate to each flood zone (reproduced in Table 1 below) and those that would be required to meet a Justification Test in accordance to Box. 5.1 in the Guidelines.

	Flood Zone A	Flood Zone B	Flood Zone C
Highly vulnerable development (including essential infrastructure)	Justification Test	Justification Test	Appropriate
Less vulnerable development	Justification Test	Appropriate	Appropriate
Water-compatible	Appropriate	Appropriate	Appropriate

Table 1 Matrix of vulnerability versus flood zone (extracted from OPW Guidelines, 2009)

1.3 Impact of Climate Change on Flood Risk

The OPW states in the "Climate Change Sectoral Adaptation Plan 2015-2019" that climate change will significantly increase the flood risk by different mechanisms including:

- Sea level rising
- Increase in Rainfall/Runoff
- Increase in wind speed and hence extreme storms surge events.

The OPW specified two main Climate Change Scenarios for the Pilot CFRAMS Studies, which are: (1) Mid-Range Future Scenario MRFS and; (2) High-End Future Scenario HEFS. Table 2 below shows the parameters of each scenario.

Parameter	MRFS	HEFS
Rainfall	+20%	+30%
Flood Flows	+20%	+30%
Sea Level Rising	+500 mm	+1000 mm

 Table 2 Flood Parameters for the Mid-Range Future and High-End Future Scenarios. Adopted From

 "Climate Change Sectoral Adaptation Plan 2015-2019"

1.4 OPW Flood Risk Maps

The OPW Flood Maps Viewer available in <u>www.floodinfo.ie</u>, allows access to flood mapping data through an interactive map search. The available OPW Flood Risk Maps for the study area account only for Fluvial Flooding (Rivers). Information on Fluvial Flooding over the extent of the study area was found in flood risk map No. E09DUN-EXFCD-F6-04 for Dunboyne area in Co. Meath (Refer to **Appendix B**).

1.5 Site-Specific Flood Risk Assessment for Development

The OPW Guidelines require a Site-Specific Flood Risk Assessment to "gather relevant information sufficient to identify and assess all sources of flood risk and the impact of drainage from the proposal". It should "quantify the risks and the effects of any necessary mitigation, together with the measures needed or proposed to manage residual risks". It considers the nature of flood hazard, taking account of the presence of any flood risk management measures such as flood protection schemes and how development will reduce the flood risk to acceptable levels. A detailed assessment for a development application should conclude that the development is not at risk from core flood risk elements and that residual risks can be successfully managed with no unacceptable impacts on adjacent lands.

1.6 Flood Risk Assessment Stages

The stages of a Flood Risk Assessment as defined by "The Planning System and Flood Risk Management, Guidelines for Planning Authorities" and its Technical Appendices are as follows:

- Stage 1 Flood Risk Identification
- Stage 2 Initial Flood Risk Assessment
- Stage 3 Detailed Flood Risk Assessment

The following sections of this SSFRA follows this approach.

2 Stage 1: Flood Risk Identification

2.1 General

In this stage of SSFRA, we use the existing information to identify any flooding issues related to the site that may require any further investigation.

2.2 Source of Information

Information source reviewed for flood risk identification are listed in table 3 below:

	Information Source	Remarks
1	Predictive and historic flood maps and benefiting lands maps available on <u>www.floodmaps.ie</u> .	Refer to Appendix A . There were no OPW land commission schemes or benefitting land zones within the subject site's boundary. No flood events were recorded near the site.
2	Predictive fluvial, coastal, pluvial and groundwater flood maps available on <u>www.floodinfo.ie</u> .	Refer to Appendix B . The proposed development is located outside the extents of the 1 in 1000 year (0.1% AEP) of the "Tolka" river catchment.
3	Previous CFRAMS studies on the area of "Dunboyne/Clonee".	The "Tolka" river catchment and watercourse network near the study are was reviewed based on the report "UoM 9 – Liffey and Dublin Bay Hydraulic Modelling Report for Dunboyne Area". An extract from this report in Figure 6 indicates that there is no significant stream as part of the Tolka river system passes through the subject site's area.
4	Information on watercourse and streams in the study area such as those available from OS Maps, EPA and GeoHiv	An extract from EPA map viewer https://gis.epa.ie/EPAMaps/; with active <i>stream</i> and <i>flow direction</i> layers in Figure 7 shows the presence of a stream running through the proposed site that originates from an adjacent 3 rd part land.
5	Information on existing drainage system and historical flooding in the study area from Meath County Council MCC	Refer to Appendix F for correspondence between CSEA and MCC regarding flooding issues in the site location.

 Table 3 Information Source Consulted

Project: EngineNode Data Centre

Title: Site Specific Flood Risk Assessment Report

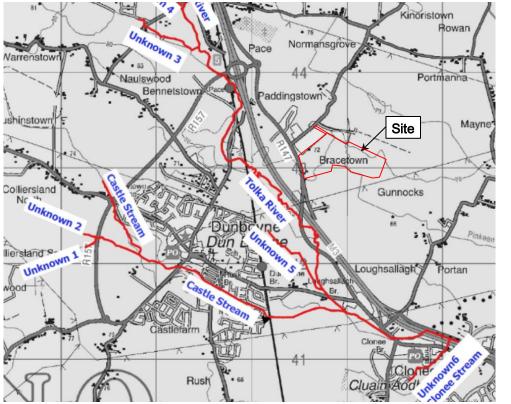


Figure 6 Tolka River network and proposed site location. Extract from "UoM 9 – Liffey and Dublin Bay Hydraulic Modelling Report for Dunboyne Area"

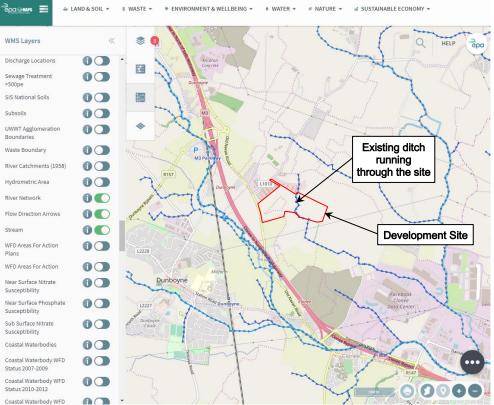


Figure 7 Location of the proposed development site on an extract from EPA map viewer https://gis.epa.ie/EPAMaps/; with the active layers river networks, stream and flow direction.

H

Associates

Clifton Scannell Emerson

Title: Site Specific Flood Risk Assessment Report

2.3 Source-Path-Receptor

A Source-Pathway-Receptor model has been produced to assess the possible sources of floodwater and their likelihood, the pathways by which flood water reaches receptors and the receptors that could be affected by potential flooding, as summarized in Table 4 below.

Source	Path	Receptor	Likelihood	Impact	Risk
Tidal	Tidal flooding from coasts 15.0 km away from the site	People and Property (the proposed development).	Remote	High	Very Low
Fluvial	Flooding from Tolka River 300m away from the site	People and Property (the proposed development).	Remote	High	Very Low
Fluvial	Flooding from the existing ditches running through the site	People and Property (the proposed development).	Possible	High	Moderate
Pluvial/Surface Water	Flooding from surcharging of the development's proposed surface water network	People and Property (the proposed development).	Possible	High	Moderate
Pluvial/Surface Water	Flooding from rise in water levels in the attenuation basins'	People and Property (the proposed development).	Possible	High	Moderate
Ground Water	Rising GWL on the site	People and Property (the proposed development).	Possible	High	Moderate
Other Source	Flooding due to human or mechanical error in sizing of Petrol interceptor or the hydrobrake/ blockage at any drainage system component.	People and Property (the proposed development).	Possible	High	Moderate

Table 4 Source-Path-Receptor analysis

From the SPR analysis presented above, it is noted that the proposed development site is not subject to tidal (Coastal) or fluvial flooding (Tolka River) due to its remote geographic location from these sources and therefore very low risk of flooding. However, Moderate risk remains from minor ditches running through the site and from internal drainage system service to the development.

Stage 2 and 3 of this SSFRA will provide further details on the possible source of flooding noted in table 4 above.

Clifton Scannell Emerson

Associates

3 Stage 2: Initial Flood Risk Assessment

3.1 Fluvial Flooding from existing Ditches

The Source-Pathway-Receptor model also identified that there could be a potential for Fluvial flood risk within the development site related to the existing drainage ditches within the site. The main ditch runs through the site has a catchment area of approximately 1.0 km² according to Flood Studies Updates (FSU) web portal data as shown in Figure 8 below.

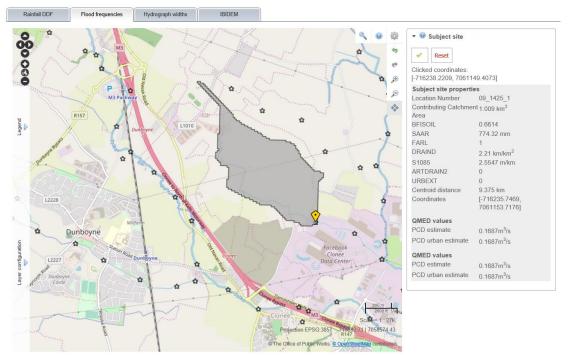


Figure 8 FSU run for ungauged sites showing the subject ditch's catchment area and characteristics

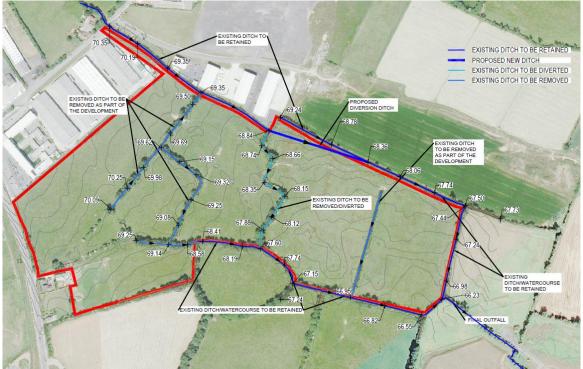


Figure 9 Proposed arrangement for the existing ditches running in the site.

The analysis of topographical survey carried out for the site shows the existing ditches network in the study area and their flow direction as displayed in Figure 9. As part of the proposed surface water drainage, the existing ditches around the site will be retained. Ditches that originate from within the site will be removed as their catchments will drain as part of the proposed development's drainage system. It is noted that the identified ditch running through the site will be diverted by an open channel that runs within the norther border of the development. Further analysis on the capacity and associated flood risk with the proposed diversion work will be discussed in Stage 3 of this SSFRA.

3.2 Pluvial Flooding from Surface Water Drainage

The Source-Pathway-Receptor model presented in Stage 1 indicated the likelihood of Fluvial and Pluvial flooding types within the site. The identified risk of flooding in the study area is primarily associated with the future drainage networks service to the proposed development (see Figure 10).

The drainage system has a potential to cause local flooding unless it is designed in accordance with the regulations e.g. Greater Dublin Strategic Drainage Study (GDSDS) and to take account of flood 100-year storm return periods plus 20% allowance for climate change.

Proper operation and maintenance of the drainage system should be implemented to reduce the pluvial flood risk due to human/ mechanical error. **Appendix C** presents a proposed Operation and Maintenance O&M Plan for the drainage system in the development.

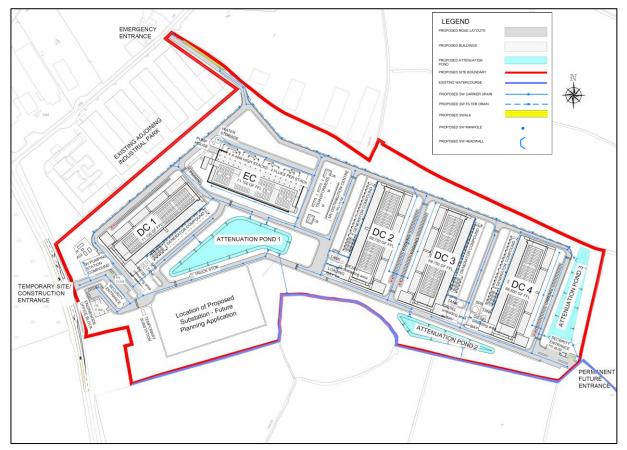


Figure 10 Proposed surface water drainage layout

3.3 Ground Water Flooding

Based on the geotechnical investigation on the site, ground water was encountered in most trial pits at 1.2 m to 2.5 m BGL. During the site walkover survey, no marshy ground was observed. No groundwater wells or marsh areas are located within the site (based on review of information available on EPA and OSI websites). Therefore, the risk of groundwater flooding occurring at the site is considered negligible.

Title: Site Specific Flood Risk Assessment Report

Clifton Scannell Emerson Associates

3.4 Flood Zone Category

Following the assessment of the flood risks to the site and the available information it is considered that the proposed site is located within Flood Zone C as per the OWP Guidelines and as indicated by the CFRAMS maps - refer to Appendix B. Therefore, the proposed development on the subject site is appropriate for this flood zone category, and a justification test is not required.

Stage 3: Detailed Flood Risk Assessment 4

As a justification test is not required, a detailed flood risk assessment must be carried out which considers moderate Fluvial and Pluvial Flood Risk in relation to the following;

- Proposed Surface Water Management measures. •
- Impact of proposed arrangement of the existing ditches. •
- Residual risks. •

4.1 Proposed Surface Water Management measures

The proposal of surface water drainage system service to the development (refer to figure 10) has been designed with the application of the following approaches, parameters and methods:

- Drainage design consists of Sustainable Drainage system (SuDS) with roof downpipes, gullies, pipes, manholes, attenuation ponds and discharge control at outlets.
- SuDS systems will be provided including filter drains, permeable pavements, treatment storage • and petrol interceptors.
- Attenuation to be three number ponds.
- All pipe networks and attenuation designed to convey 1 in 100 storm-event without flooding.
- All calculations have allowed for an additional allowance of 10% in rainfall intensities to allow for climate change.
- Site discharge rate is controlled to Greater Dublin Strategic Drainage Study (GDSDS) standards.
- Proposed operation and maintenance activities for surface water drainage system in the development is to be implemented as described in Appendix C.

4.2 Impact of Proposed Arrangement of the Existing Ditches.

Α. Ditches to be removed

As discussed in Section 3.1, those minor ditches and hedgerows within the site that serve as land drains only and are not watercourses. Upon development of the site, these ditches will serve no drainage function as positive drainage system will be constructed in lieu, therefore, their removal poses no flood risk post-development.

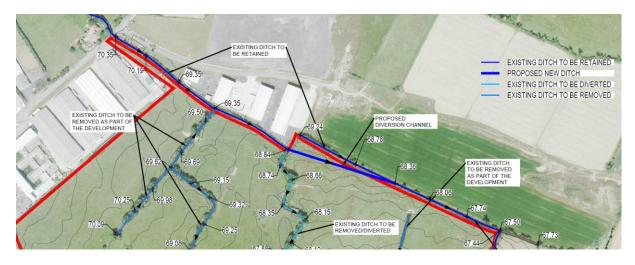
Β. Ditches to be diverted

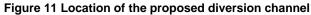
The existing ditch running through the development site was identified in Stage 1 of this SSFRA has a potential moderate flooding impact on the site, and therefore, further assessed in in section 4.3 of this report. The catchment area draining to the ditch was estimated as 1.0 km² according to FSU run. It is proposed to remove this ditch as part of site development works and constructing a new ditch runs in the open space adjacent to the north boarded 3rd party land.

The catchment area is less than 25 km², therefore it is appropriate to use IH124 to estimate Qbar:

$$Q_{har} = 0.00108 \ x \ AREA^{0.89} \ x \ SAAR^{1.17} \ x \ SOIL^{2.17}$$

Where:


 $AREA = 1.0 \text{ km}^2$ SAAR = average annual rainfall = 775mm (FSU data) SOIL= Soil type index (0.1-0.53) = 0.37 \rightarrow moderate drainage condition according to EPA soil map available https://gis.epa.ie/EPAMaps/ $Q_{Bar} = 0.3 \text{ I/s}$ Growth factor used for $Q_{100yr} = 2.6$ (as per GDSDS), hence, $Q_{100yr} = 0.78 \text{ m}^3/\text{s}$ Q_{100yr} + 10% Climate Change = 0.86 m³/s


Project: EngineNode Data Centre

Title: Site Specific Flood Risk Assessment Report

Clifton Scannell Emerson Associates

The diversion work proposes an open channel of 1m bottom width and will tie-in to the existing upstream and downstream levels as shown in Figure 11. The hydraulic characteristics and capacity of the proposed channel section are presented in Figure 12. It is noted that the flow depth is approximately 0.58m during $Q_{100yr+Cc}$ and hence no risk of overbank flow during this event.

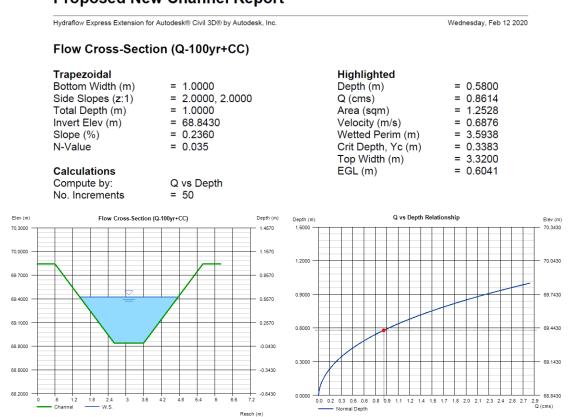


Figure 12 Hydraulic analysis of the proposed new channel used for diversion (Calculated by Hydraflow Civil3D)

Proposed New Channel Report

www.csea.ie

4.3 Assessment of Residual Risk

4.3.1 General

As discussed in sections 4.1, the flood risk associated with the proposed surface water drainage system will be reduced through the compliance with GDSDS design guidelines and the implementation of proper O&M approach. It was shown in section 4.2 that there is no negative impact from the proposed removal of the existing ditches system in the development.

However, the remining residual flood risk may be associated with the proposed alteration/modification of watercourse. A hydraulic model (1D steady state HEC-RAS) was used to assess the impact of the proposed diversion work on the connected ditches downstream which run along the site boarder from the north and the east. The assessment will be based on a design flow of 100-year storm event plus climate change allowance ($Q_{100yr+CC}$). The design flow will account for a contributing catchment of 1.0km² as discussed in section 4.2 -B.

In the following sections, HEC RAS model parameters, data and results will be presented in summary.

4.3.2 Geometric data

The geometric data which describes the physical boundary of the system were prepared through Civil3D export, see Figure 13. The data comprises 6no. of cross-sections along the proposed new channel and 14no. of cross-sections along existing ditches. The total model is C.662m in length with variable spacing between cross-sections. Detail geometric data are presented in Appendix D. Figure 13 below shows the locations of cross-sections along the modelled channel.

The recommended Manning's roughness 'n' values may be found in HEC-RAS reference manual. The selected Manning's 'n' was set as a constant along the modelled reach with a value of 0.035.

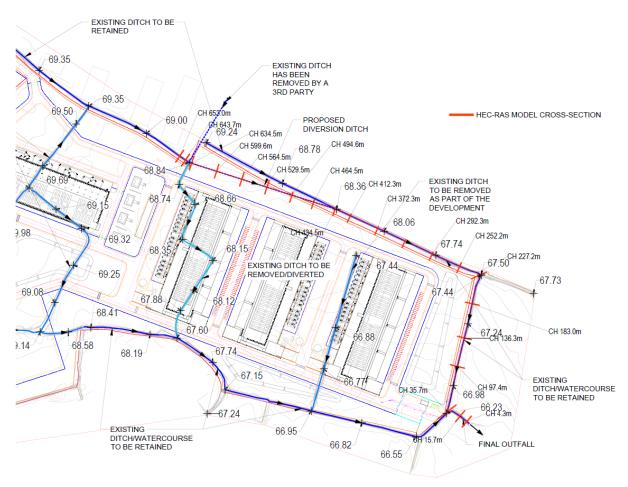


Figure 13 Location of cross-sections used in the hydraulic model

Title: Site Specific Flood Risk Assessment Report

4.3.3 Boundary Conditions BC

Hydraulic performance of the proposed culvert was examined for different flow condition as discussed in section 4.1. Table 1 shows the upstream boundary condition (B.Cs) used in the model represented as different flow events entering the system at the most upstream cross-section (X-C No. 653.0) and downstream B.Cs corresponding to each flood event.

Table 5 Boundary Conditions used in HEC-RAS model

Return Period	Upstream B.C @ X-C 653.0 Discharge (m ³ /s)	Downstream B.C @ X-C 4.3, Normal depth m/m
Q _{10 years}	0.30	0.001
Q _{30 years}	0.37	0.001
Q _{100 years} +CC 20%	0.86	0.001

4.3.4 Results

The resulting water surface profiles of the steady flow model is shown in Figure 14 below. The profiles represent different boundary conditions set-up as discussed in section 4.3.3. The model results indicate that design flow is accommodated within the channel in all sections along the profile. It is noted that no overbank flow occur at any section along the modelled stream channel (new and existing sections), and therefore, no flood risk due to the proposed new channel. Detailed results fo HEC-RAS model are shown in Appendix D.

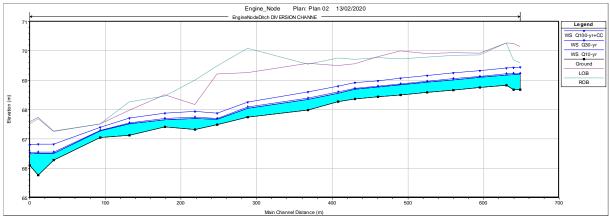


Figure 14 HEC-RAS resulted longitudinal water surface profile for the modelled ditch

5 Conclusion

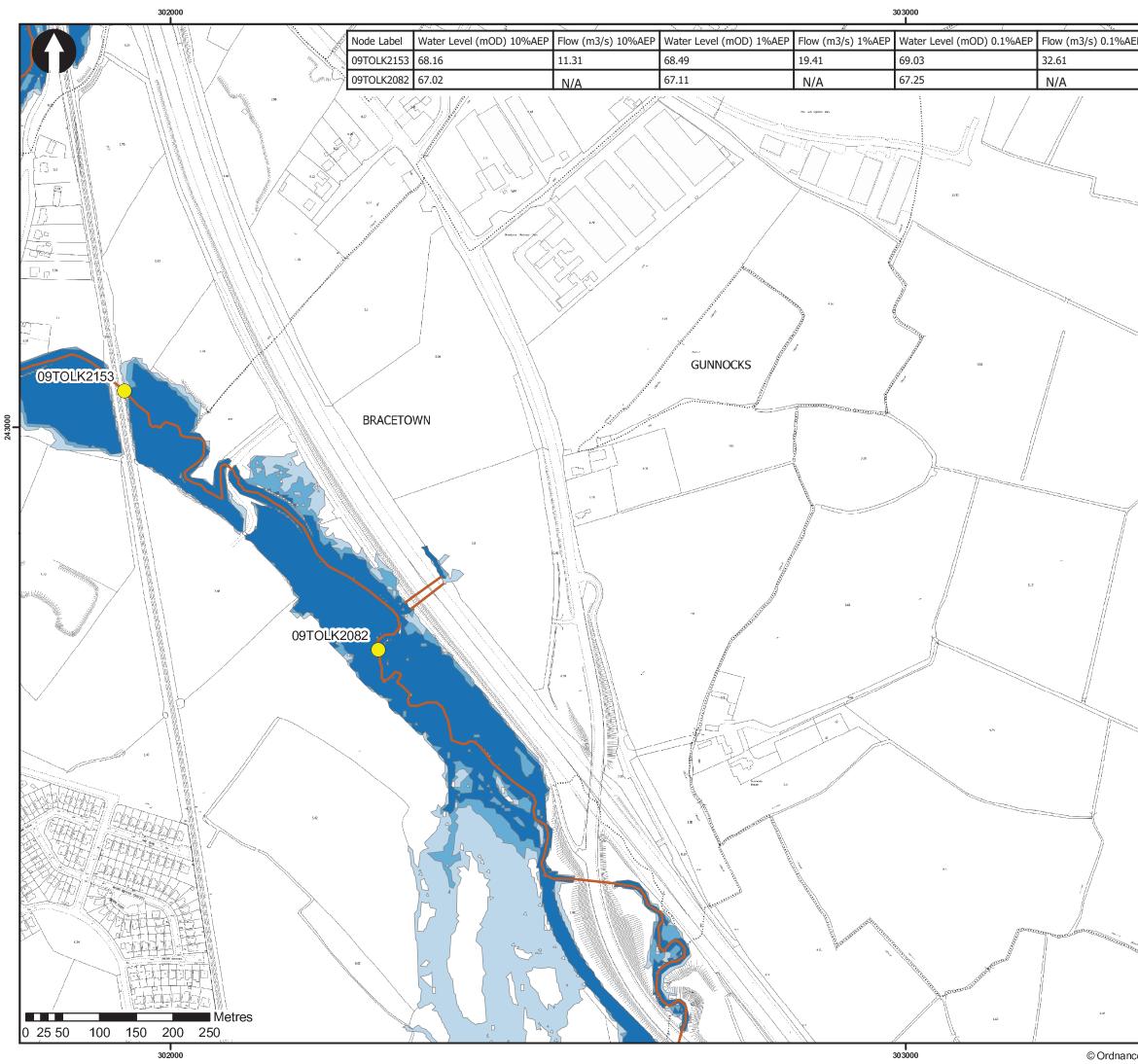
This Site-Specific Flood Risk Assessment for the proposed development was undertaken to the requirements of the OPW Guidelines, 2009, "Planning System and Flood Risk Management Guidelines for Planning Authorities". Following the flood risk assessment stages, it was determined that the site is within Flood Zone C as defined by the Guidelines and based on the CFRAMS mapping. Therefore, the development on the subject site is appropriate for the site's flood zone category and a justification test as outlined in the Guidelines is not required. The Guidelines sequential approach is met with the 'Justify' & 'Mitigate' principals being achieved.

A regularly maintained drainage system would ensure that the network remains effective and in good working order should a large pluvial storm occur.

It was also concluded that the proposed minor alterations to the existing ditches/watercourse within the development poses no flood risk to the development or to the adjacent third party lands.

Appendix A: Historic flood maps and benefiting lands maps available on www.floodmaps.ie

he n oun GR:	Flood Report summarises all flood events within 2.5 kilometres nap centre is in:		tre.
Coun NGR:	-		
NGR:	nty: Meath		
his F	: O 025 428		
estric	Flood Report has been downloaded from the Web site www.floc ctions and limitations relating to the content and use of this Web ing the site. It is a condition of use of the Web site that you acce	site that are e	xplained in the Disclaimer box wh
	(C)Ordnance Survey Ireland. All rights reserved, Licence No EN		Map Legend
		2 m	Flood Points
			Multiple / Recurring Flood Points
		.8	Areas Flooded
		>	Hydrometric Stations
	The second		/ Rivers
		1 >	Lakes
		02	River Catchment Areas
		A	Land Commission *
			Drainage Districts *
		0.48	Benefiting Lands *
	LONGROAT AGE		* Important: These maps do
	Map Scale 1:19,726		not indicate flood hazard or flood extent. Thier purpose
~ -			and scope is explained in the
6 R	lesults		Glossary.
	1. Tolka November 2002		13/Nov/2002
	County: Meath, Dublin Additional Information: Photos (126) Reports (9) Videos (3) Press Archive	Flood Qua	
•	2. Tolka Loughsallagh Nov 2000		: 07/Nov/2000
Δ	County: Meath		lity Code:2
	Additional Information: Photos (4) Reports (3) More Mapped Information		
Δ	3. Tolka Dunboyne Nov 2000	Start Date:	05/Nov/2000
	County: Meath Flood Q		lity Code:2
	Additional Information: Photos (5) Reports (7) Press Archive (2) More Map	pped Information	
Λ	4. Tolka Clonee Nov 2000		05/Nov/2000
-	County: Meath		lity Code:2
	Additional Information: Photos (2) Reports (3) Press Archive (1) More Map	KAN TAPAKASAN	Includ II Marco
	5. Tolka, Clonee Dunboyne - 25 August 1986	Start Date:	


Project Number: 18_086 Project: EngineNode Data Centre Title: Site Specific Flood Risk Assessment Report

Appendix B: CFRAM Flood Risk Map

www.csea.ie

Page 20 of 30

_		The second
		and the second s
		Grey squares have no extent shown for this suite of flood maps so no maps have been produced.
		AFA Boundary
		Modelled River Centreline
///		Defended Area
		Defence - Embankments
		Model Limits
	243000	Model Nodes
	5	10% AEP Fluvial Extent
		1% AEP Fluvial Extent
		0.1% AEP Fluvial Extent
		IMPORTANT USER NOTE: THE FLOWS PRESENTED IN THIS MAP ARE RELEVANT TO THE LOCATION SHOWN ONLY. THEY SHOULD NOT BE USED WITHOUT FIRST REFERRING TO THE HYDRAULIC MODELLING REPORT TO UNDERSTAND THE CONTEXT OF THE HYDROLOGY AT THE SITE
		THE VIEWER OF THIS MAP SHOULD REFER TO THE DISCLAIMER, GUIDANCE NOTES AND CONDITIONS OF USE THAT ACCOMPANY THIS MAP.
//		JBA consulting
		The Office of Public Works JBA Consulting Jonathan Swift Street 24 Grove Island Trim Corbally Co. Meath Limerick, Ireland
[]		Map: Dunboyne Flood Extent Map Type: Flood Extent Final
6		Map Area: HPW Source: Fluvial Scenario: Current
		Drawn by: TS Date: Jul 2019 Scale: Checked by: TC Date: Jul 2019 11:5,000
		Approved by: JC Date: Jul 2019 Original @ A3 Map No: E09DUN_EXFCD_F6_04 Sheet: 4 of 7

 \circledcirc Ordnance Survey Ireland, 2019. All rights reserved. Licence number EN0021019

Appendix C: Surface Water Operation and Maintenance (O&M) Activities

All operation and maintenance activities should be in accordance to the following guidelines:

- Greater Dublin Strategic Drainage Study GDSDS- Volume 3 Environmental Management
- CIRIA 2015SuDS Manual, Part E Chapter 32

Considerations for surface water O&M:

Requirement	Assessment/Action
<i>Maintenance access</i> – ensuring appropriate and long-term access to all points in the system where future maintenance may be required	A standard minimum of 600mm diameter opening is provided for all manhole, chambers and treatment system. Removable gullies grate opening with a minimum size of 450mm X 320mm.
Forebays and/or appropriate pre-treatment structures to facilitate the sediment management process.	Service manholes are proposed upstream and downstream of the attenuation system. Road gullies and the petrol interceptor will also facilitate sediment management process.
Bypass systems or appropriate temporary drainage infrastructure for use if required during sediment management or other maintenance activities.	Not required
The availability of disposal areas for organic arisings (green waste) and sediments.	To be included as part of maintenance contract of the development.

Types of SuDS systems used that require O&M activities:

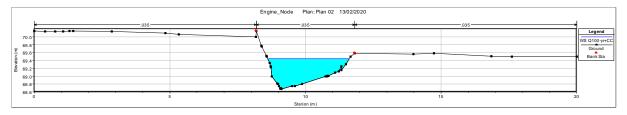
- **Detention Pond:** 3no. of proposed ponds.
- Soakaway: N/A.
- Pervious Paving: proposed permeable paving areas proposed within the development area
- Treatment system: proposed petrol interceptor as part of road and parking drainage system

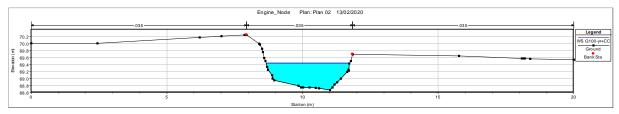
O&M activities required as following:

Operation and maintenance activities		SuDS Co	mponent	
O&M Activities	Attenuation Tank	Soakaway	Pervious Paving	Treatment System
Regular maintenance				
Inspection				
Litter/debris removal				
Grass cutting				
Weed/invasive plant control	•			
Shrub management				
Shoreline vegetation management				
Aquatic vegetation management				
Occasional maintenance			1	
Sediment management				
Vegetation/plant replacement				
Vacuum sweeping and brushing				
Remedial maintenance				
Structure rehabilitation/repair				
Infiltration surface reconditioning				
 Will be required 				
□ May be required				

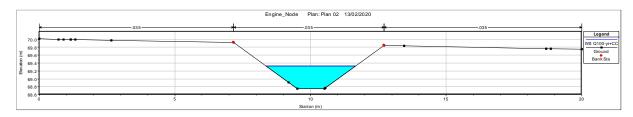
Project Number: 18_086 Project: EngineNode Data Centre Title: Site Specific Flood Risk Assessment Report

Appendix D: HEC-RAS Model Results

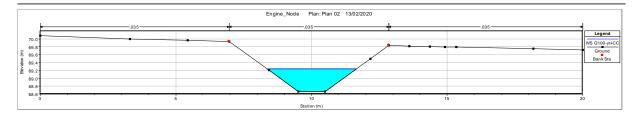

Title: Site Specific Flood Risk Assessment Report

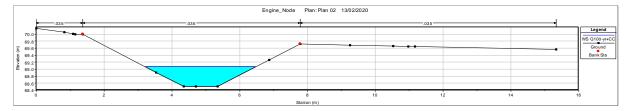

Clifton Scannell Emerson Associates

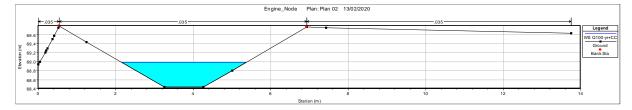
Summary Table for maximum flood level Q 100 year + Climate Change

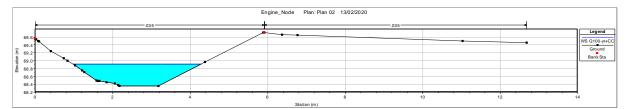

•							•					
Reach	River Sta	Profile	Q Total (m3/s)	Min Ch. El (m)	W.S. Elev (m)	Crit. W.S. (m)	E.G. Elev. (m)	E.G. Slope (m/m)	Vel Chnl (m/s)	Flow Area (m2)	Top Width (m)	Froude #
DIVERSION CHANNE	653.02	Q _{100-yr+CC}	· · ·	68.68	69.44	()	69.46	0.001380	0.57	1.5Ó	3.01	0.26
DIVERSION CHANNE	643.73	Q100-yr+CC		68.68	69.44		69.45	0.000847	0.49	1.74	3.06	0.21
DIVERSION CHANNE	634.48	Q100-yr+CC		68.83	69.41		69.43	0.002355	0.69	1.25	3.32	0.36
DIVERSION CHANNE	599.62	Q100-yr+CC		68.75	69.33		69.35	0.002380	0.69	1.24	3.31	0.36
DIVERSION CHANNE	564.5	Q100-yr+CC		68.67	69.24		69.27	0.002392	0.69	1.24	3.31	0.36
DIVERSION CHANNE	529.5	Q100-yr+CC		68.58	69.16		69.18	0.002445	0.70	1.23	3.29	0.36
DIVERSION CHANNE	494.64	Q100-yr+CC		68.50	69.07		69.10	0.002570	0.70	1.23	3.27	0.37
DIVERSION CHANNE	494.04			68.43	68.99		69.01	0.002824	0.71	1.17	3.27	0.37
DIVERSION CHANNE	404.40	Q100-yr+CC			68.99		68.94	0.002302	0.73	1.17	3.25 3.30	0.39
		Q _{100-yr+CC}		68.36								
DIVERSION CHANNE	412.25	Q _{100-yr+CC}		68.27	68.79		68.85	0.006693	1.06	0.81	2.31	0.57
DIVERSION CHANNE	372.29	Q _{100-yr+CC}		67.98	68.61		68.65	0.003812	0.88	0.98	2.22	0.42
DIVERSION CHANNE	292.25	Q100-yr+CC		67.75	68.26		68.30	0.004902	0.96	0.89	2.21	0.48
DIVERSION CHANNE	252.25	Q100-yr+CC	0.86	67.48	67.87		67.98	0.014921	1.43	0.60	1.97	0.83
DIVERSION CHANNE	222.74	Q _{100-yr+CC}	0.86	67.32	67.93		67.93	0.000142	0.19	4.54	10.71	0.09
DIVERSION CHANNE	182.97	Q _{100-yr+CC}	0.86	67.41	67.88		67.92	0.003784	0.82	1.04	2.84	0.43
DIVERSION CHANNE	136.31	Q100-vr+CC		67.13	67.72	67.48	67.75	0.003242	0.80	1.07	2.56	0.39
DIVERSION CHANNE	97.36	Q100-vr+CC	0.86	67.06	67.39	67.39	67.48	0.023123	1.30	0.66	3.89	1.01
DIVERSION CHANNE	35.71	Q100-yr+CC		66.29	66.83		66.83	0.000291	0.26	3.32	9.12	0.13
DIVERSION CHANNE	15.67	Q100-yr+CC		65.77	66.82		66.82	0.000284	0.33	2.56	3.08	0.12
DIVERSION CHANNE	4.3	Q100-yr+CC		66.11	66.80	66.40	66.82	0.001001	0.52	1.64	2.89	0.22
	ч. 0	∞ 100-y1+00	0.00	50.11	30.00	00.40	30.02	0.001001	0.02	1.04	2.00	5.22

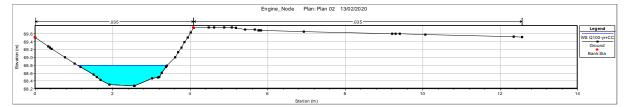
Cross Section – Model Output

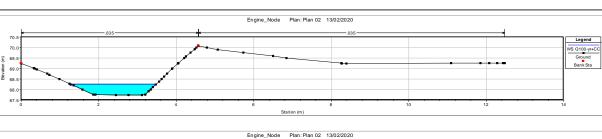


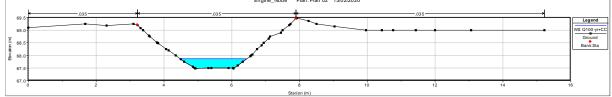

Project: EngineNode Data Centre

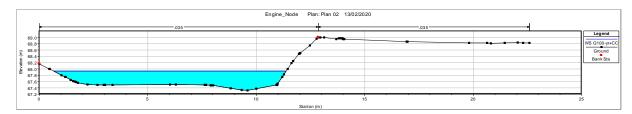

Title: Site Specific Flood Risk Assessment Report

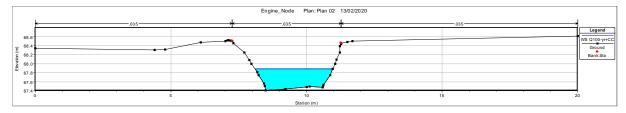


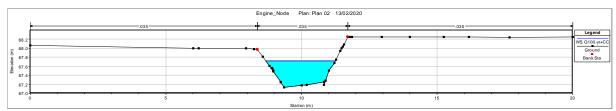


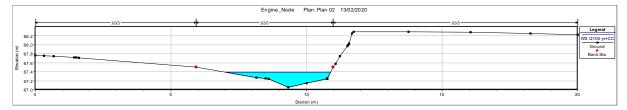


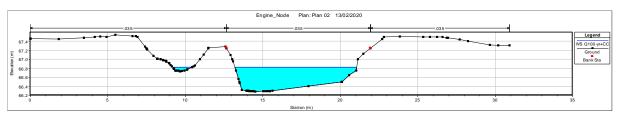


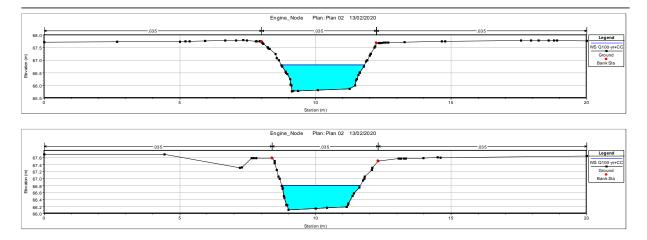



Project: EngineNode Data Centre

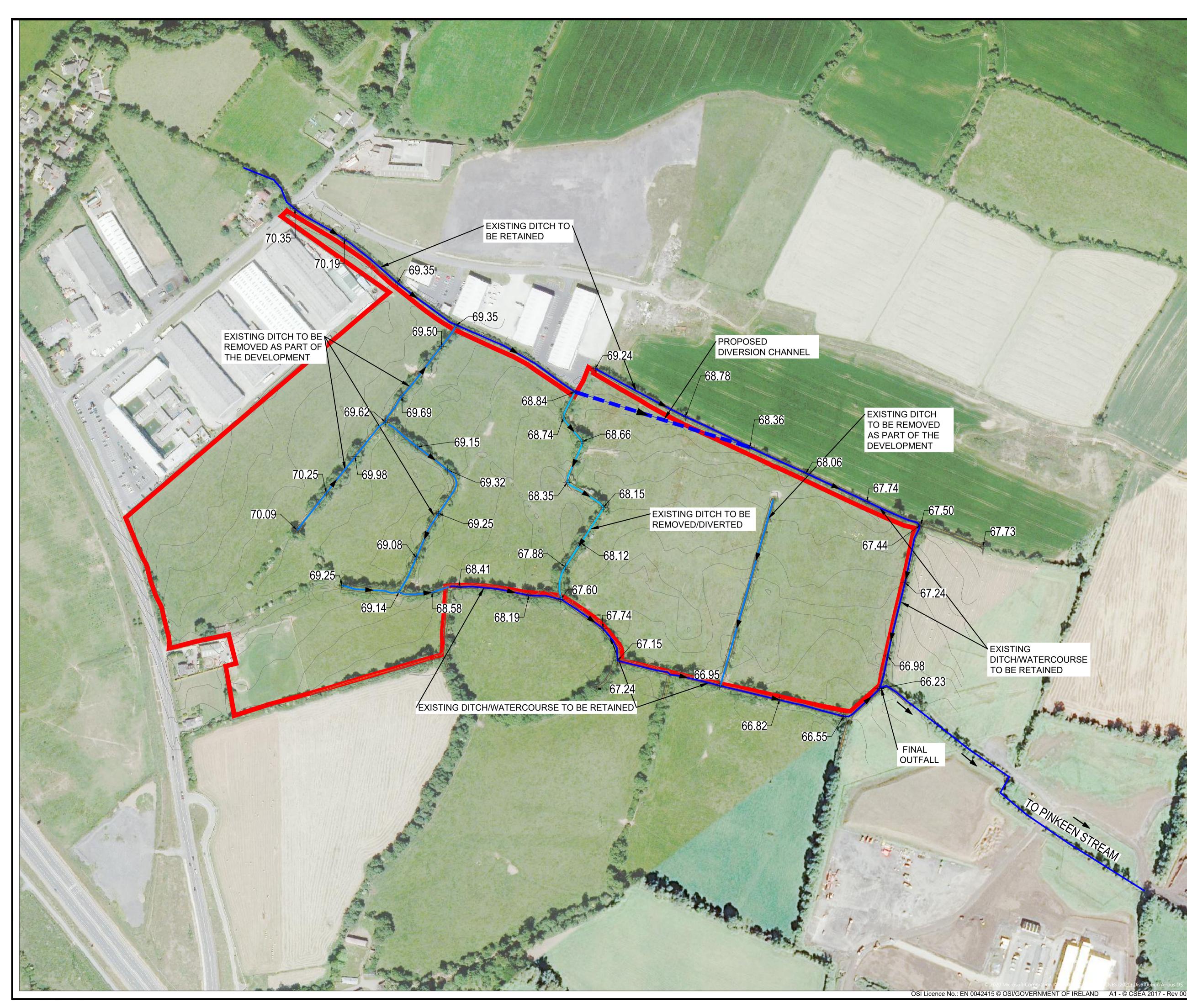

Title: Site Specific Flood Risk Assessment Report







Project: EngineNode Data Centre


Title: Site Specific Flood Risk Assessment Report

Appendix E: Drawings of Proposed Alterations to Existing Ditches.

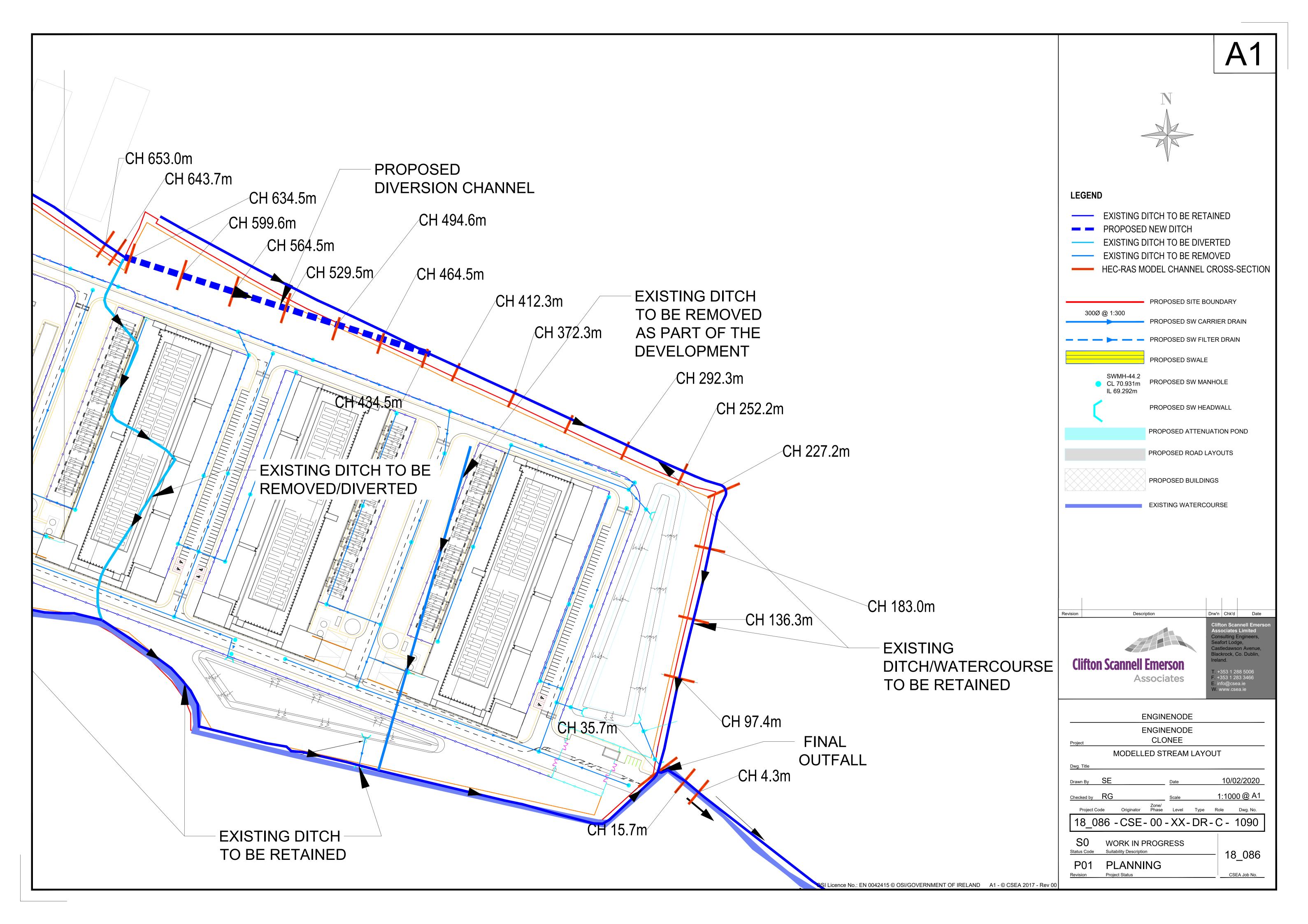
LEGEND

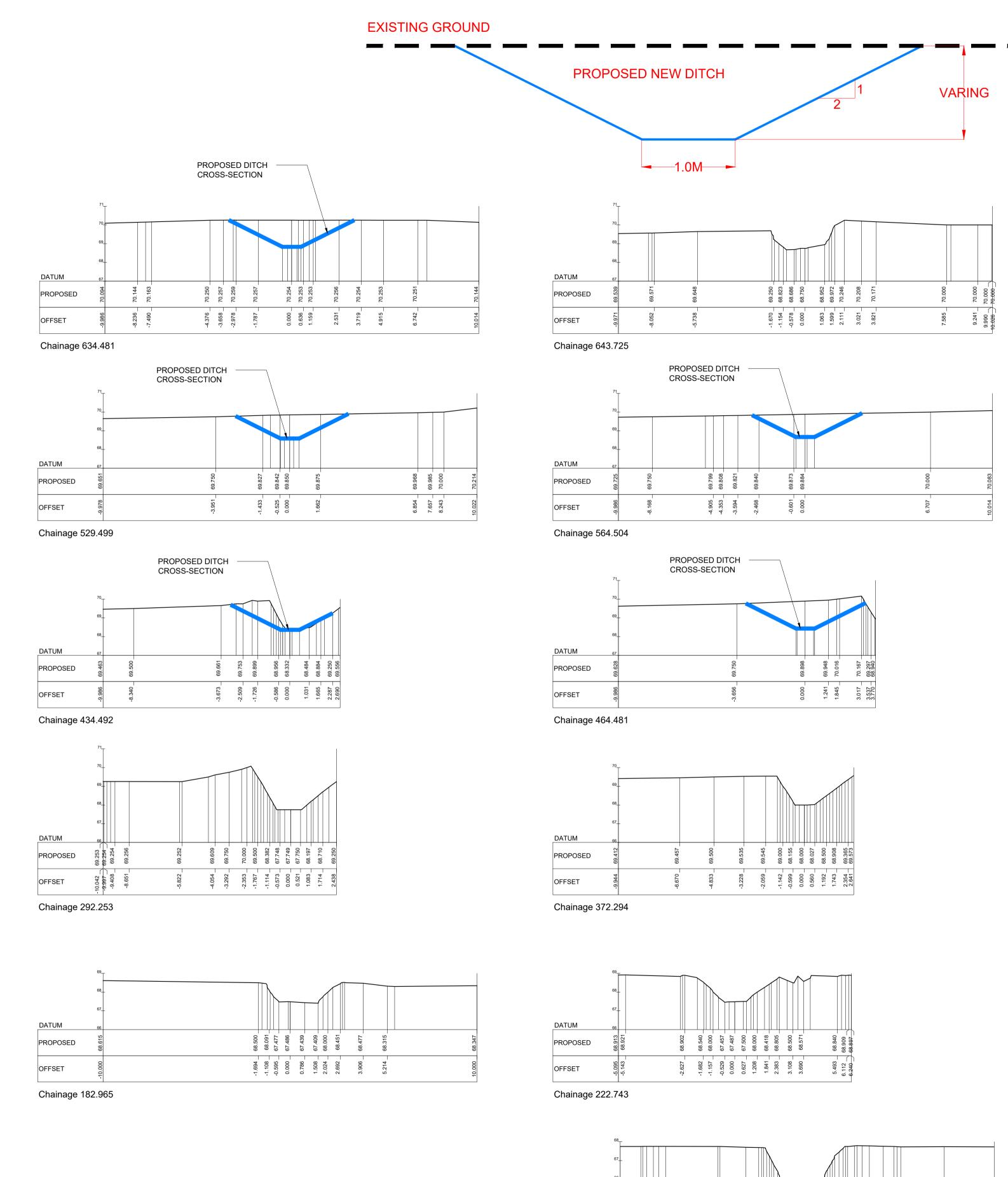
man Bay Bay

EXISTING DITCH TO BE RETAINED PROPOSED NEW DITCH EXISTING DITCH TO BE DIVERTED EXISTING DITCH TO BE REMOVED SITE BOUNDARY

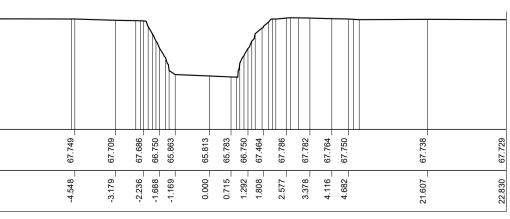
Description

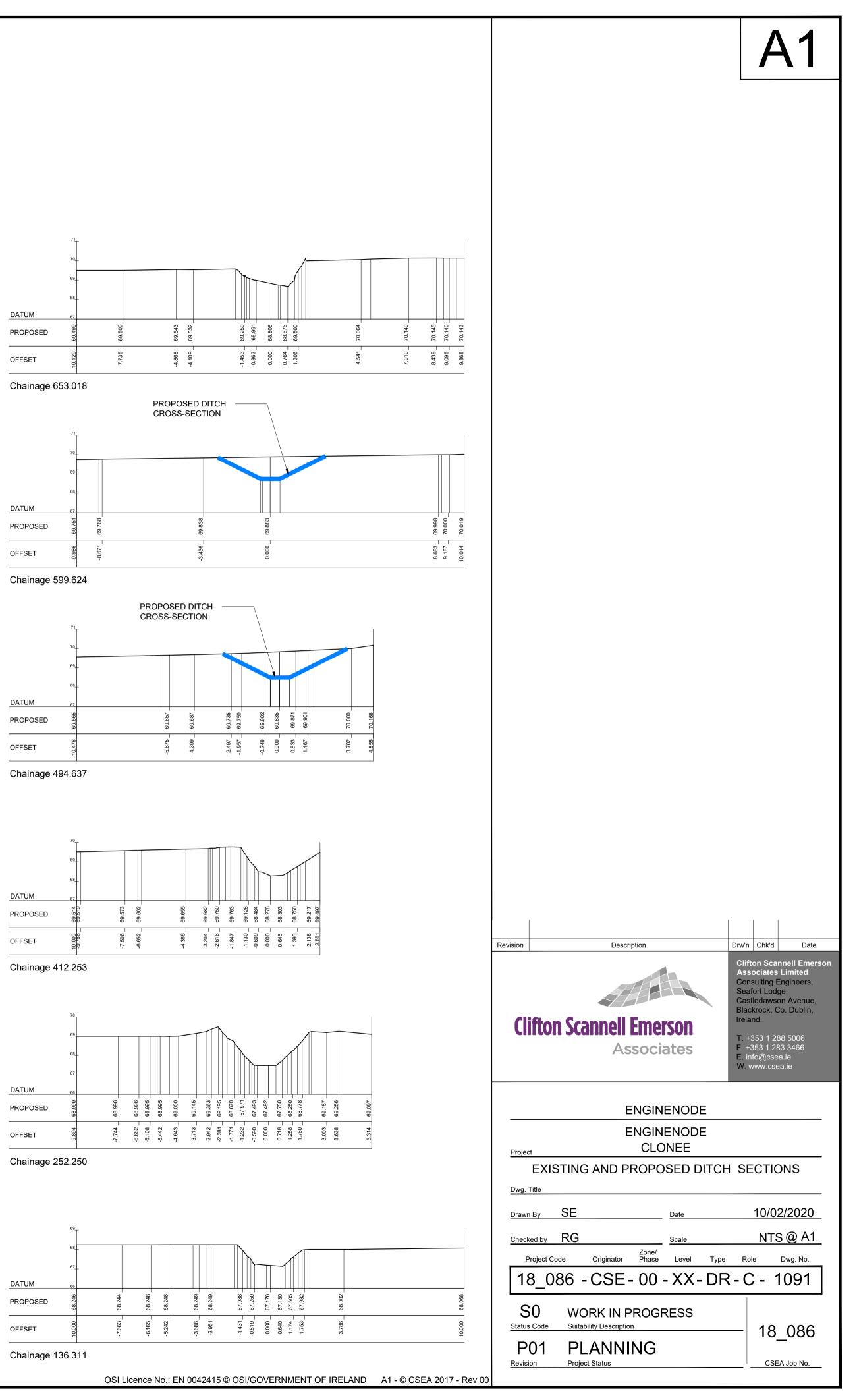
Revision

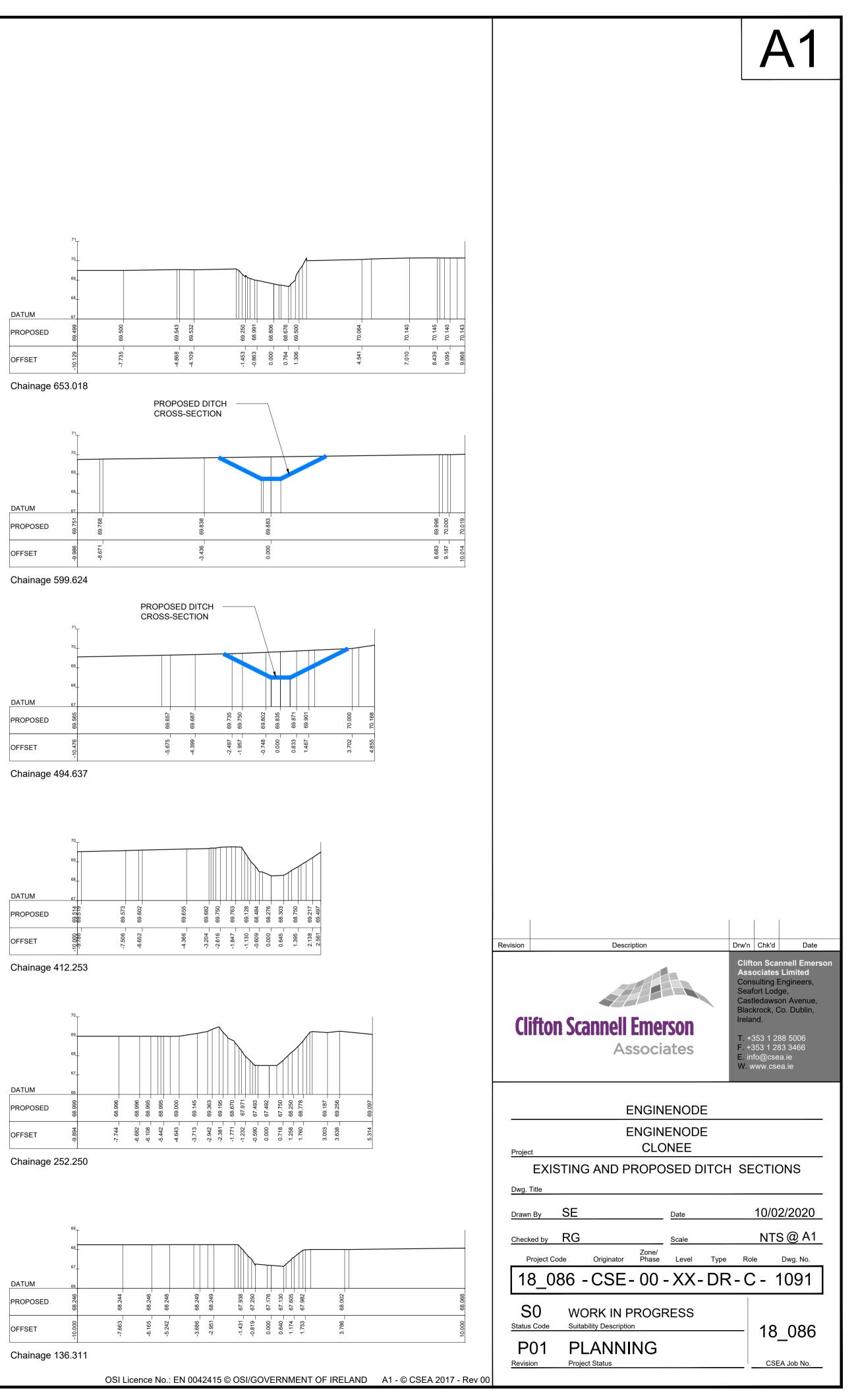

Drw'n Chk'd Date Clifton Scannell Emerson Associates Limited Consulting Engineers, Seafort Lodge, Castledawson Avenue, lackrock, Co. Dublin, eland.

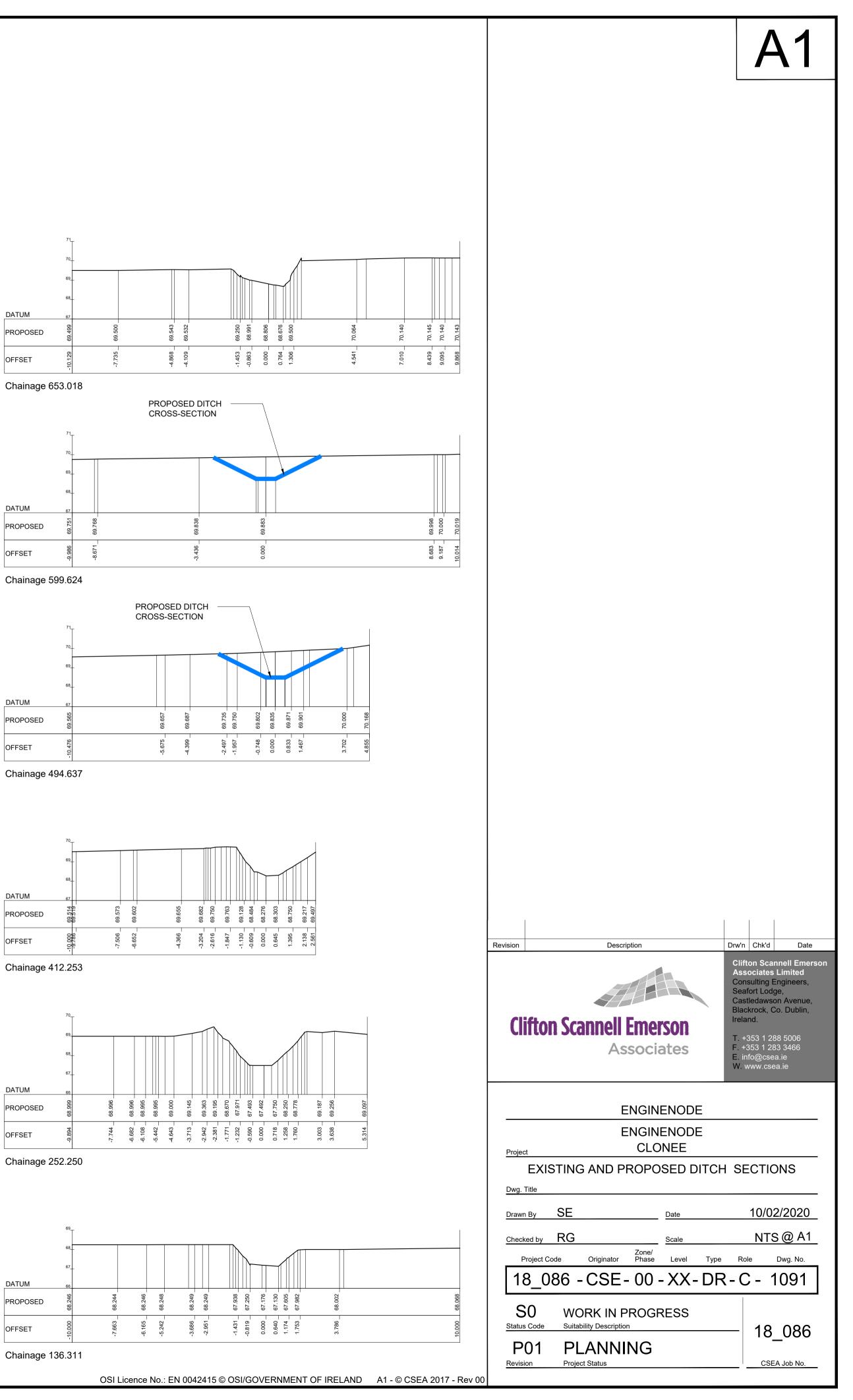

Clifton Scannell Emerson Associates

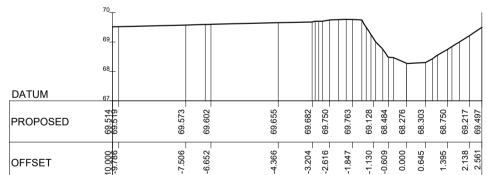
T. +353 1 288 5006 F. +353 1 283 3466 E. info@csea.ie W. www.csea.ie

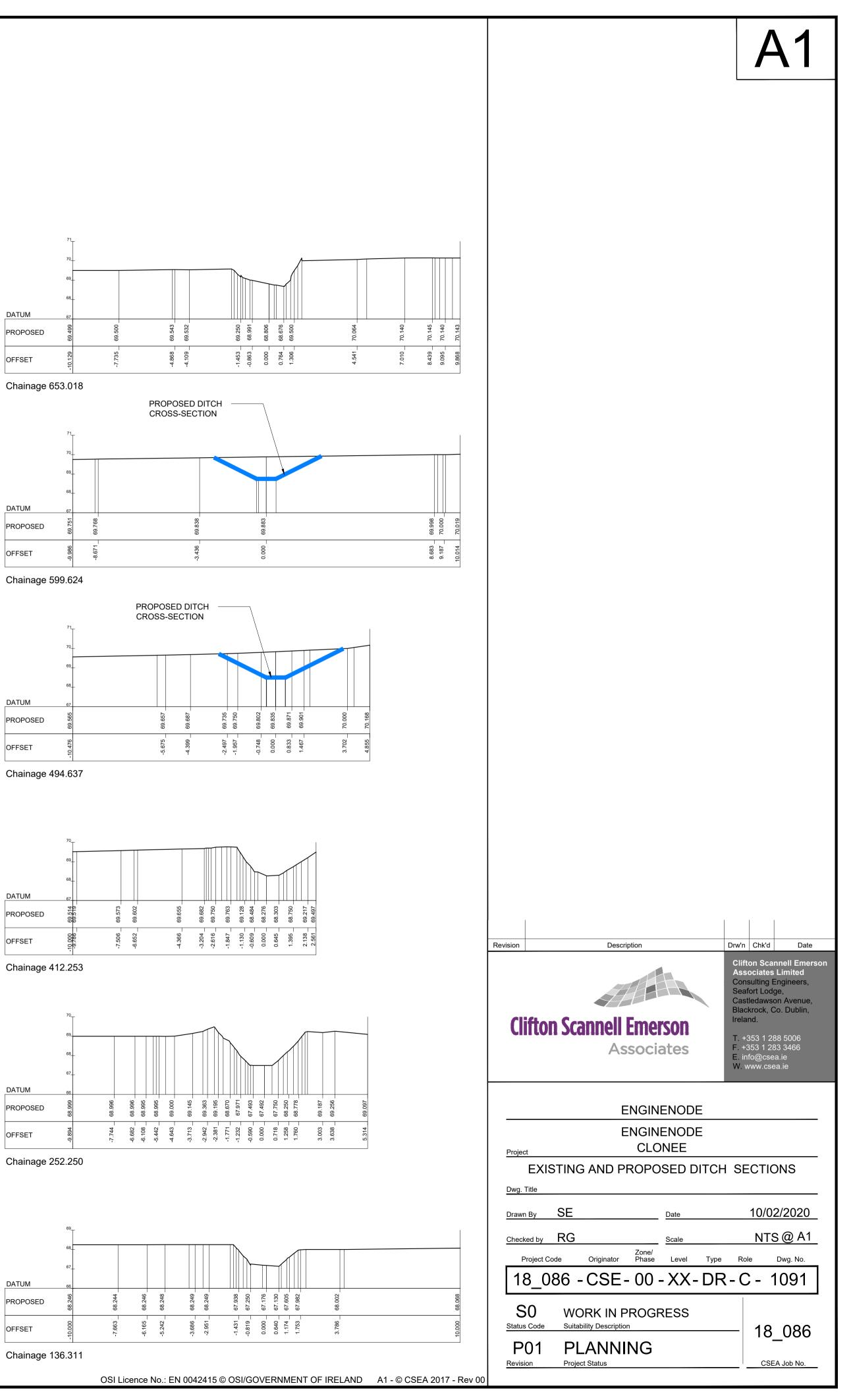

ENGINENODE
ENGINENODE
CLONEE

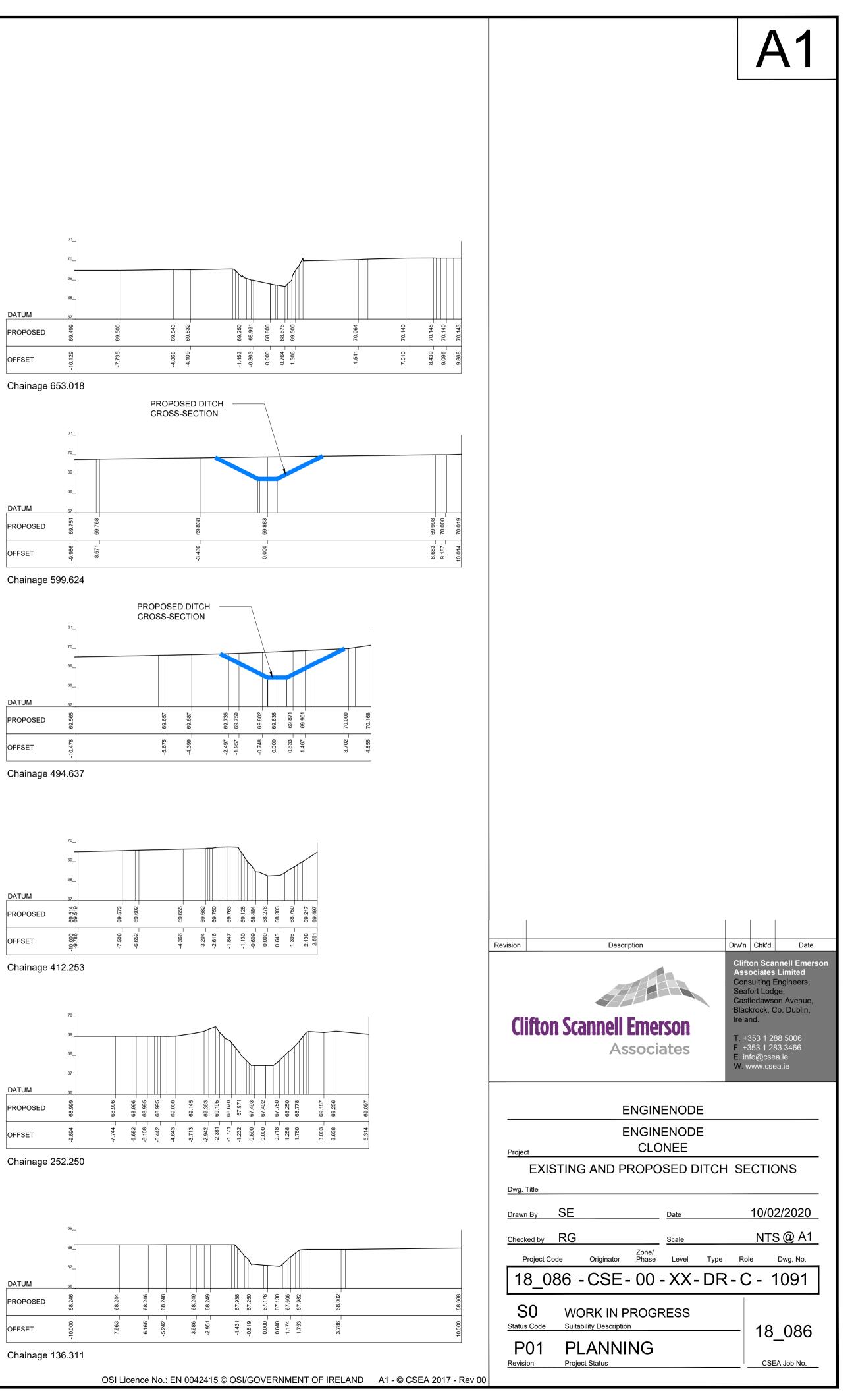

EXIS	TING	DITCH	ES/WA	ATERC	OURS	SE LA	YOUT
Dwg. Title							
Drawn By	SE			Date		10/	02/2020
Checked by	RG			Scale		1:20	00@A1
Project Co	de	Originator	Zone/ Phase	Level	Туре	Role	Dwg. No.
18_08	36 -	CSE	00 ·	- XX -	DR	- C -	1089
S0 Status Code		ORK IN P		RESS			0 006
P01	PL	ANNI	NG				8_086
Revision	Projec	t Status				C	SEA Job No.






DATUM 754 755 754 PROPOSED 67. 67. -8.650 -8.085 -7.430 OFFSET Chainage 15.673





Appendix F: Related Correspondence Between CSEA and Meath County Council

Siddig Elshareef

From:	Conor Doherty <conor.doherty@csea.ie></conor.doherty@csea.ie>
Sent:	Tuesday 20 August 2019 10:08
То:	David Keyes
Cc:	Laurence McCrudden; Philip Traynor; David O'Reilly; Paul Aspell
Subject:	RE: 18_086 - EngineNode Data Centre
Attachments:	ENGN-CSE-00-XX-DR-C-1010 - Surface Water Outfall to Pinkeen Stream.pdf

David,

Please find attached drawing as requested.

If you have any queries please do not hesitate to get in touch.

Regards,

Conor

From: David Keyes <david.keyes@ meathcoco.ie>
Sent: Tuesday 20 August 2019 09:44
To: Conor Doherty <Conor.Doherty@ csea.ie>
Cc: Laurence McCrudden <Laurence.McCrudden@ csea.ie>; Philip Traynor <philip.traynor@ meathcoco.ie>; David
O'Reilly <david.oreilly@ meathcoco.ie>; Paul Aspell <paul.aspell@ meathcoco.ie>
Subject: RE: 18_086 - EngineNode Data Centre

Conor,

Please forward on the relevant drawing. I am referring to David O'Reilly and Paul Aspell who deal with Surface Water issues on Planning Applications

Regards David

From: Conor Doherty [mailto:Conor.Doherty@csea.ie]
Sent: 20 August 2019 09:32
To: Philip Traynor; David Keyes
Cc: Laurence McCrudden
Subject: RE: 18_086 - EngineNode Data Centre

Philip,

Many thanks for the update., much appreciated.

Regards,

Conor

From: Philip Traynor <<u>philip.traynor@meathcoco.ie</u>>
Sent: Tuesday 20 August 2019 09:29
To: Conor Doherty <<u>Conor.Doherty@csea.ie</u>>; David Keyes <<u>david.keyes@meathcoco.ie</u>>
Subject: FW: 18_086 - EngineNode Data Centre

Conor,

I am not aware of any legacy issues regarding flooding at this location, however, by way of this email, I have forwarded on to David Keyes, SEO, Environment for follow up. Regards, Phillip

From: Conor Doherty [<u>mailto:Conor.Doherty@csea.ie</u>] Sent: 19 August 2019 14:32 To: Philip Traynor Subject: FW: 18_086 - EngineNode Data Centre

Philip,

Just to follow up our phone call this morning we would be grateful if you could advise if there are any issues with discharging attenuated surface water flow to the ditch/watercourse shown in blue on the attached drawing.

If you would like to meet to discuss please let us know.

Regards,

Conor

From: Conor Doherty Sent: Friday 16 August 2019 11:46 To: <u>Philip.traynor@meathcoco.ie</u> Cc: Laurence McCrudden <<u>Laurence.McCrudden@csea.ie</u>> Subject: 18_086 - EngineNode Data Centre

Philip,

We are working on a planning application for development of a Data Centre campus at a site in Bracetown Co. Meath. I received your contact details from Paul Aspell who asked us to get in touch with you regarding Surface Water Drainage from the site. (A layout plan indicating the site location relative to local watercourses is attached for your information).

Would it be possible to meet with you at a time of your convenience next week?

Many thanks for your assistance.

Kind Regards,

Conor Doherty Senior Civil Engineer

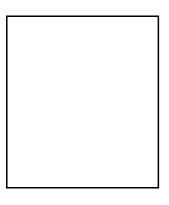
Clifton Scannell Emerson Associates Consulting Engineers CSEA, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin T. +353 1 2885006 | F. +353 1 2833466 | Web. <u>www.csea.ie</u> | Email. <u>conor.doherty@csea.ie</u>

Twitter. <u>www.twitter.com/cseassociates</u> | Linkedin. <u>www.linkedin.com/pub/clifton-scannell-emerson-associates</u> Find out more at <u>www.csea.ie</u>

The contents of this e-mail (including attachments) are private and confidential and may also be subject to legal privilege. It is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering it to the addressee, you may not copy or deliver this e-mail or any attachments to anyone else or make

any use of its contents; you should not read any part of this e-mail or any attachments. Unauthorised disclosure or communication or other use of the contents of this e-mail or any part thereof may be prohibited by law and may constitute a criminal offence.

MakeItMeath.com

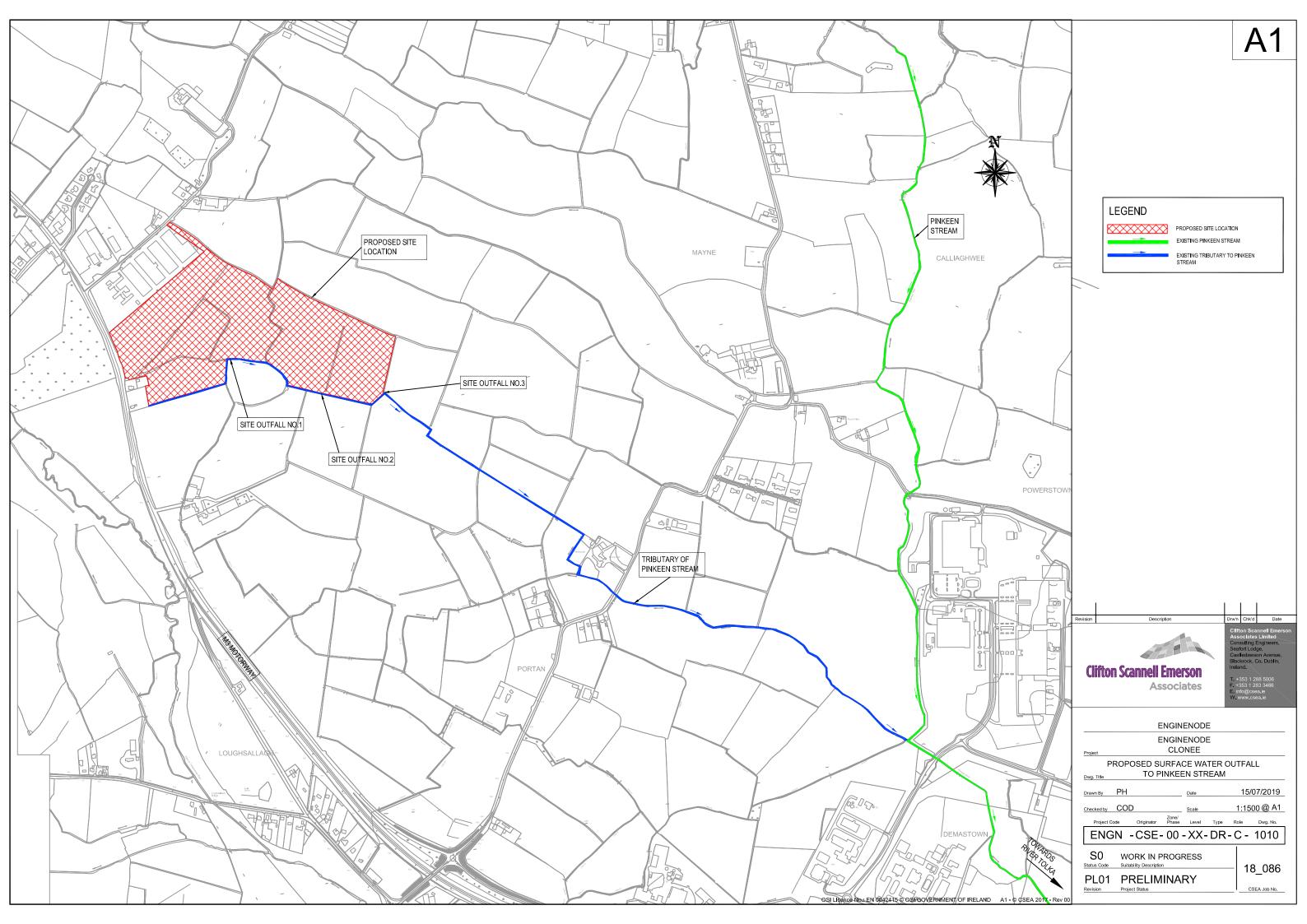

#MakeItMeath

Navan, Co. Meath, C15 Y291

The contents of this e-mail (including attachments) are private and confidential and may also be subject to legal privilege. It is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering it to the addressee, you may not copy or deliver this e-mail or any attachments to anyone else or make any use of its contents; you should not read any part of this e-mail or any attachments. Unauthorised disclosure or communication or other use of the contents of this e-mail or any part thereof may be prohibited by law and may constitute a criminal offence.

MakeItMeath.com

#MakeItMeath



Email Disclaimer: http://www.meath.ie/EmailDisclaimer/

Meath County Council?s new corporate headquarters are: Buvinda House, Dublin Road, Navan, Co. Meath, C15 Y291

Clifton Scannell Emerson Associates Limited, Civil & Structural Consulting Engineers Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland.

T. +353 1 288 5006 F. +353 1 283 3466 E. info@csea.ie W. www.csea.ie

Clifton Scannell Emerson Associates Limited, Civil & Structural Consulting Engineers Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland.

T. +353 1 288 5006 F. +353 1 283 3466 E. info@csea.ie W. www.csea.ie

